CITY OF HOUSTON DEPARTMENT OF PUBLIC WORKS AND ENGINEERING

FOR SUBMERSIBLE LIFT STATIONS

Daniel W. Krueger, P.E. Director

Carl W. Smitha, P.E. Acting City Engineer

JANUARY 2011

ENGINEERING DESIGN MANUAL FOR SUBMERSIBLE LIFT STATIONS

TABLE OF CONTENTS

SECTION 1 INTRODUCTION

		PAGE
1.1 1.2	Purpose	
1.3	Responsibility of Design Engineer	
	,	
	SECTION 2	
	CIVIL DESIGN CRITERIA	
2.1	Description and Design Capacity of Lift Stations	4
2.2	Hatch Loadings and Clear Opening Dimensions	
2.3	Valve Vault Dimensions and Pump Spacing	5
2.4	Force Main and Pump Station Size Selection	
2.5	Pump Selection	
2.6	Efficiency and Pumping Cost	
2.7	Prequalified Pump Manufacturers	
2.8	Force Main Discharge Manhole	
2.9	Receiving Sewer	8
2.10	Example of Construction of System Head and Pump Capacity Curves	0
0.44	to Determine Actual Pump Operating Capacities	8
2.11	Wet Well Design	
2.12	Surge Pressure in a Force Main	
2.13 2.14	Comparison: Surge Analysis by Computer Programs	
2.14	Surge Pressure Considerations Estimate of Surge Pressure in a Force Main	
2.15	Surge ReliefValves	
2.10	Pipeline Design	
2.17	CheckValves	
2.19	Shut-Off Valves	
2.20	Blow-OffValves	
2.21	Air and Vacuum Valves	
2.22	Provisions for Lift Station By-Pass	
2.23	Site Requirement	
2.24	Corrosion Control	
2 25	Odor Control	

SECTION 3 STRUCTURAL DESIGN CRITERIA

Section		Page
3.1	Specification Codes	
3.2	Loads	
3.3	Buoyancy	48
3.4	Design Stresses	48
3.5	Design Considerations	49
3.6	Detailing	51
	SECTION 4	
	MECHANICAL DESIGN CRITERIA	
4.1	General	52
4.2	Wet Well Ventilation	
4.3	Valve Vault Ventilation	
4.4	Plumbing	
4.5	Control Building Cooling	53
FI	SECTION 5 LECTRIC POWER AND INSTRUMENTATION CONTROLS DESIGN CRITER	IΔ
5.1	Basic Data	
5.2	Electrical Drawing Set	
5.3	Electrical Symbols Legend₁ Lighting Fixture Schedule and Abbreviations	
5.4 5.5	Site Plan Electrical Plans and Sections	56
5.6 5.6		
5.0 5.7	Typical Details	58
5.8	Control Cabinet Layout	
5.9	Process and Instrumentation Diagrams	
5.10	Control System Wiring Diagrams	59
5.11	MCC and Power Wiring Diagrams	59
5.12	Single Line Diagrams	
5.13	Conduit Schedule	
5.14	Device Ratings Schedule	
5.15	MCC Elevation	

LIST OF TABLES

1	Lift Station Configurations, Pumping, Ranges, Discharge Piping and Wet Well Sizes	1
2	Pump Control Schedule Example	+ 5
3	Wave Speed in Steel and Cast Iron Pipe	
4		18
5	Wave Speed in Other Plastic Pipe	9
6		24
7	Check List for Force Mains of Category "A" Items only	25
8	Lift Station Configuration Pump Ranges, Capacity Ranges,	
	Discharge Piping, Wet Well Size and Site Size 4	10
9 10	Biofilter Design Criteria	15 16
	LIST OF FIGURES	
I	Pump Performance Curve	0
2	System Head and Pump Capacity Curves	0
3	Typical Construction of Multiple Pump Operating Curves	
4	Typical Wet Well Elevation Showing Pump Control Levels	
5	Example of Surge Relief Valve Size Selection Chart	32
6	Example of Column Separation Determination	3
7 8	Effect of Air Entrapment on Pump TDH	i4
O	Air Vacuum Valve Capacity Chart	ю
	APPENDICES	
A. B. C.	General Drawing/File Information Structural Design Calculations Typical Electrical Design Calculations Examples	

SECTION 1 INTRODUCTION

SECTION 1 INTRODUCTION

1.1 Purpose

This Manual provides guidance and design criteria for use by Design Engineers developing site-specific drawings for new lift stations. The Design Guideline Drawings for Submersible Lift Stations are to be used with this manual as applicable. The purpose of these documents is to provide facilities that are consistent in quality and arrangement, throughout the City of Houston service areas. Any variance from this manual will be approved by the City Engineer.

1.2 Coordination with Other Documents

In addition to this manual and the Design Guideline Drawings, the Design Engineer should be familiar with the Design Guidelines for Lift Stations and Force Mains, Equipment Prequalification, and the City of Houston Standard Technical Specifications for further design criteria or other requirements that may be applicable to a specific project.

1.3 Responsibility of Design Engineer

The overall responsibility of the Contracted Design Engineer is to select the Design Guideline Drawings that are applicable to a specific lift station design and modify the drawings as required. A list of specific design and other requirements that would be the responsibility of the Design Engineer includes, but is not limited to, the following tasks:

- 1.3.1 The Design Engineer shall use the latest City of Houston Submersible Lift Station Design Guidelines and Drawings.
- 1.3.2 Provide control building for 3-pump lift stations with pump rating of 50 horsepower or greater..
- 1.3.3 Determine which station configuration is required: Preferred, Secured Site or Exposed Site.
- 1.3.4 Perform hydraulic calculations and develop system curves to determine sizes and quantities of the following:
- 1.3.4.1 Pumps and motors (identify acceptable models from at least three Prequalified manufacturers)
- 1.3.4.2 Discharge piping and valves
- 1.3.4.3 Header and force main

- 1.3.5 Determine necessity of and/or sizes for:
- 1.3.5.1 Surge relief valve(s) If surge relief valve is required provide analysis in the Final Engineering Design Report for justification.
- 1.3.5.2 Air release valve An air release valve is required on all lift stations.
- 1.3.5.3 Air and vacuum valves
- 1.3.6 Determine piping size for wet well ventilation.
- 1.3.7 Determine size for valve vault ventilation fan(s) and air duct(s), if required.
- 1.3.8 Determine depth of wet well and wet well volume as it relates to pump controls.
- 1.3.9 If a control building is used, determine the required length and verify or adjust the structural design, as necessary. Review CTE design calculations for the control building to verify adequacy and applicability to the project specific requirements. Provide revised or original calculations as needed to the tailor to the specific project. This is required to allow placing of the design engineer's registration stamp on the Drawings. Include design criteria and assumptions on the Drawings sufficient to obtain building permits.
- 1.3.10 Review CTE design calculations for the wet well top slab (entire structure for 2-pump small lift stations) and valve vault (when used) to verify adequacy and applicability to project specific requirements. Provide revised or original calculations as needed to tailor to the specific project. This is required to allow placing of the design engineer's registration stamp on the Contract Drawings.
- 1.3.11 Complete structural design for wet well walls and base slab. Provide buoyancy calculations.
- 1.3.12 Caisson and/or open cut types of construction should be designed and shown on the Contract Drawings. .
- 1.3.13 Provide a complete listing of the structural design criteria for the lift station and any other related structures. The criteria should include materials, loadings and load combinations, major design assumptions, and design approach. These criteria should be included as an appendix to the Final Engineering Design Report.
- 1.3.14 Obtain 2-year electrical service records from Utility Service Provider. . Calculate the required storage capacity as defined by 30 TAC.217 and determine measures required to meet power reliability standards.
- 1.3.15 Complete and/or augment conduit and device rating schedules as necessary for specific project requirements. Determine service size from the latest Guideline Drawings. Obtain available fault current from Utility Service Provider and calculate

- fault ratings. Determine need for and size of power factor correction capacitors.
- 1.3.16 Coordinate with the City's project manager to initiate electrical service/application.
- 1.3.17 Provide all details for site pavement cross-section, joints, connection to existing pavement, curbs, sidewalks, etc. Control and/or expansion joints shall be shown located to reduce the potential for cracking.
- 1.3.18 Remove all notes to Design Engineer (shown in Italics) from the Contract Drawings. Provide all information shown as *TBD* or as otherwise instructed in notes to Design Engineer. Revise sheet numbers, title block information, etc. as appropriate for specific project contract drawing package. See Appendix "A", Figure A-5, for a general example.
- 1.3.19 Dimensions on the Guideline Drawings which are modified by "max" or "min", but which need to be selected, as a definite dimension by the design engineer should have the appropriate dimension listed without the modifier.
- 1.3.20 Complete additional designer responsibilities as described in this manual.
- 1.3.21 Provide Odor Control facilities if required.
- 1.3.22 Edit and supplement the City of Houston Standard Technical Specifications as needed to apply to the specific project. Delete or indicate as "Not Applicable to this Project" where materials or equipment included in the specifications is not used for the specific project.
- 1.3.23 Comply with the Landscaping requirements of City of Houston Ordinance No. 91-1701.
- 1.3.24 Sign and seal final Contract Documents including Guideline Drawings modified or otherwise included in the Contract Drawings.
- 1.3.25 Provide hydraulic analysis, if required, to justify use of baffle walls in the wet well.

SECTION 2 CIVIL DESIGN CRITERIA

SECTION 2 CIVIL DESIGN CRITERIA

- 2.1 Description and Design Criteria for Submersible Lift Stations
- 2.1.1 The physical dimensions and range of design capacities of the Lift Stations are shown in the following Table 1.

Lift Station Configuration
Pump Ranges, Capacity Ranges, Discharge Piping, Wet Well Size and Site Size

Number	Individ	ual Pump	Lift Station	on Firm	Pump		Minimum	Minimum
of	Capaci	ty –	Design C	Capacity	Discharge		Wet Well	Site Size
Pumps	GPM		– GPM		Piping -		Diameter -	
					Inches		Feet	
	From	То	From	То	From	То		
2	0	199	0	199	4	4	6' - 0"	55' x 55'
2	200	499	200	499	4	8	8' – 0"	55' x 55'
2	500	999	500	999	8	10	10' – 0"	70' x 70'
3	250	500	500	999	6	10	10' – 0"	70' x 70'
3	500	999	1000	1998	8	10	12' – 0"	75' x 75'
3	1000	1399	2000	2798	10	12	14' – 0"	75' x 75'
3	1400	1999	2800	3998	12	16	16.5' – 0"	75' x 75'
3	2000	3499	4000	7198	16	24	21' – 0"	85' x 85'
4	800	3499	2400	10,497	10	20	21' – 0"	85' x 85'
5	2500	3999	7500	15,996	18	20	25' – 0"	85' x 85'
6	3000	5299	15,000	21,196	18	20	28' – 0"	90' x 90'

Note: This table has not been coordinated with the City of Houston Design Guideline Drawings for Submersible Pump Lift Stations dated 1996. These drawings are currently being revised and will be issued at a later date.

- 2.1.2 The physical dimensions of the wet well and valve vaults were sized to accommodate the maximum pipe and valve sizes required to pump the maximum range of pumping capacities per pump for each standard station as listed in Table 2.1.
- 2.2 Loadings and Clear Opening Dimensions for Hatches and Gratings
- 2.2.1 Pump and valve vault hatches and valve vault grating shall be designed for 150-psf live loading. FRP grating in standard 48-inch (or less) panel widths shall be used. Provide galvanized steel support beams where required, space to avoid interference with access to valves or other mechanical items from above.

- 2.2.2 The clear opening dimensions of the hatches for each Lift Station are shown on the Design Guideline Drawings.
- 2.2.3 The Design Engineer shall verify the size and location of the hatch openings based on the selected pump size and manufacturer as well as the selected hatch manufacturer.
- 2.2.4 The clear opening is area available to lift out pumps or valves when the hatch is open. This area is smaller than the concrete opening in the top slab or the area using the inside dimension of the frame. The reinforcement for the under side of the hatch cover reduces the clear opening of the frame.
- 2.3 Valve Vault Dimensions and Pump Spacing: The dimensions of the valve vaults associated with each standard station are based on OSHA standard clearances from entrance ladders, piping, valves, and walls or beams.
- 2.3.1 Ladder Dimensions: Minimum ladder width equals 16 inches. Minimum ladder clearance is as follows:
- 2.3.1.1 Width: Centerline of ladder to edge of adjacent wall, valve, piping, or hatch clear opening equals 15 inches.
- 2.3.1.2 Toe Depth: Centerline of ladder rungs to wall, grating support, or hatch clear opening equals 7 inches.
- 2.3.1.3 Body Depth: Centerline of ladder rungs to wall, valve, piping, or hatch clear opening equals 30 inches.
- 2.3.2 Valve Vault Head Clearance: Minimum vertical distance from valve vault floor or grate walking surface to bottom of top slab or beam equals 6 feet 8 inches minimum. Open-air valve vaults with grating over them must have enough depth for the air release valve(s) to fit on top of the discharge header and beneath the grating (a minimum vertical distance of 3' 0").
- 2.3.3 Valve Vault Pipe Spacing: Minimum spacing between valve vault piping is based on OSHA requirements and 11 inches minimum between hatch openings. Dimensions shown on the Guideline Drawings are based on the following assumptions:
- 2.3.3.1 Two (2) Pumps with 8" discharge piping: Minimum spacing of 18 inches plus twice (2X) the smaller centerline to outside edge dimension of the largest recommended check valve, which is 35 inches.
 Note: The two-pump station requires one (1) reverse arm check valve in order to maintain the minimum clearance of 18 inches.
- 2.3.3.2 Three (3) or four (4) Pumps with 12" discharge piping: Minimum spacing of 18 inches plus the total width of the largest recommended check valve equals 57 inches.

- 2.3.3.3 Three (3) or four (4) Pumps with 20" discharge piping: Minimum spacing of 18 inches plus the larger centerline to outside edge dimension of the largest recommended check valve equals 70.5 inches.
- 2.3.4 Pump Spacing: Minimum spacing between the wet well pumps is directly related to the centerline spacing of the valve vault discharge piping. This spacing is to be verified by the design engineer in accordance with selected pump manufacturer's recommendations for proper pump operation.
- 2.4 Force Main Size and Pump Station Configuration Selection
- 2.4.1 Force main size and pump station configuration should be based on sound engineering judgment and criteria provided below. Confirm all size and configuration selections with the City of Houston project manager and Wastewater Operations.
- 2.4.2 The selection of the force main size is based on the velocity of minimum and maximum pumping volumes and the heads generated. The velocities in the force main should be a minimum of 3 fps for minimum flow and a maximum of 8 fps for maximum flow. Force main velocities higher than 6 fps should be checked for possible high and low negative surge pressures during a power failure when all running pumps will stop suddenly. See Section 2.12 "Surge Pressures In a Force Main" for discussion.
- 2.4.3 A wider range of force main velocities may be considered where there is a high variance between normal dry weather flow and peak wet weather flow. Minimum dry weather discharge velocity should not be less than 2.5 fps, and maximum velocity not greater than 9 fps.
- 2.4.4 In order to accommodate wet and dry weather flow variations of approximately a maximum 4:1 ratio, the number of pumps selected must be analyzed. In general, an increased number of pumps should be used as the variance between wet and dry weather flows increases.
- 2.4.5 The total number of pumps should be based on the largest pump as a standby. Therefore, a 4-pump station configuration with 4-1000 gpm pumps will have a design firm station capacity of approximately 3000 gpm.
- 2.4.6 An example for selection of force main size and a 3 pump or 4 pump station configuration with a maximum design flow of 4.2 mgd is as follows:

```
<u>Trial No. 1</u> - Use 16 - inch force main 4 pump station = 3 pumps @ 1.4 mgd - min. vel. one pump = 1.55 fps 3 pump station = 2 pumps @ 2.1 mgd - min. vel. one pump = 2.3 fps Total flow 4.2 mgd max. vel. = 4.65 fps
```

```
<u>Trial No. 2</u> - Use 14 - inch force main 4 pumps station = 3 pumps @ 1.4 mgd - min. vel. one pump = 2.76 fps 3 pumps station = 2 pumps @ 2.1 mgd - min. vel. one pump = 3.2 fps
```

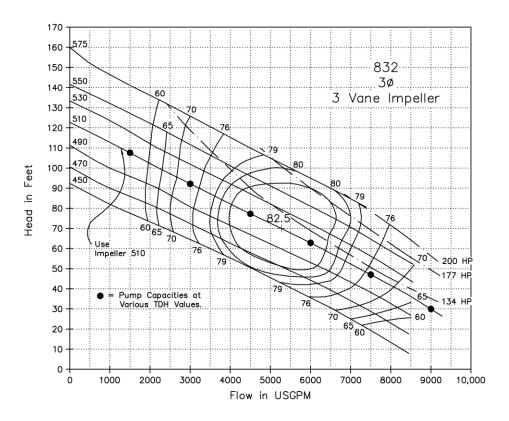
Total flow 4.2 mgd max. vel. = 8.8 fps

- 2.4.7 The selection of the pump station configuration and force main size would be for a 3-pump station with a 14-inch force main. The velocity in the 16-inch force main with 3 pump or a 4 pump station would be too low, and the velocity in the 14-inch force main for either a 3 pump or a 4 pump station @ 8.8 fps would be within recommended criteria for the total flow of 4.2 mgd.
- 2.5 Pump Selection
- 2.5.1 The section above establishes the number of pumps and the capacity required to meet total design conditions. Once the number of pumps and the flows have been determined, a system head curve as detailed in the Section 2.10 must be completed. This system head curve will establish the actual flow of the selected pumps and motors operating individually or in combination with the other pumps when pumping against a variable friction head in the force main. The selection of the pump and motor must be based on pump manufacturer's pump curves as shown in Figure 2 and the following considerations relative to efficiency and pumping costs.
- 2.6 Efficiency and Pumping Cost
- 2.6.1 If the system head curve is rather flat, consisting of mostly static head, pump selection becomes unimportant as far as operating power cost is concerned. This can be explained using the following equation:
 - Cost of pumping 1000 gallons = (TDH x Cents/KWH)/Eff (%) x 3.185
- 2.6.2 If the station system head (TDH) is assumed to be a constant value which is equal to the static head in this case, then the cost of pumping 1000 gallons will not change whether it is pumped at a rate of 500 gpm for 2.0 minutes or it is pumped at the rate of 1000 gpm for 1.0 minute assuming either pump is equally efficient at the respective operating capacity.
- 2.6.3 However, if the TDH is due mainly to frictional head loss with little or no static head, the operating power cost of a 1000 gpm pump will be 4 times as high as that of a 500 gpm pump, since the TDH of the pump is directly in proportional to the square of the operating capacity.
- 2.6.4 Taking the pump efficiency factor at different operating capacity points into consideration the cost of operating a pump at 1000 gpm may be more than 4 times as great. It is therefore important to avoid over sizing a pump when one half of pump size will meet the average requirement.
- 2.6.5 When two or more pumps operate together for the maximum flow condition care should be taken to insure that each pump will not operate near the shut-off point. For best results pumps should not be operated at less than 50% of the best efficiency point capacity nor be extended to beyond 120% of that capacity. This

requirement may be achieved by changing the pump selection, or the force main size, or both.

- 2.7 Prequalified Pump Manufacturers
- 2.7.1 Refer to City of Houston Technical Specifications for manufactures prequalified to provide pumps, motors and appurtenances for City of Houston projects. During final design, the design engineer should confirm that at least three prequalified manufacturers can meet the specified conditions.
- 2.8 Force Main Discharge Manhole
- 2.8.1 To reduce hydrogen sulfide generation at the discharge end of force main, the discharge flow inside the discharge manhole should be steady, non-turbulent by setting the top of force main pipe to match the average flow depth inside the receiving sewer pipe. A new manhole receiving a force main discharge must be specified and shown on the drawings as a "corrosion resistant manhole".
- 2.9 Receiving Sewer
- 2.9.1 The receiving sewer should be designed to handle the maximum pump discharge without surcharge. If two or more pump stations are served by one single sewer pipe, the probable maximum operating capacity of two stations combined should be determined.
- 2.9.2 Unless the sewer line is long, grade is flat and over sized, there will not be enough storage capacity inside the sewer to smooth out the peaks of two pump stations when they are operated at the same time. Under these conditions the sewer as well as pumps down stream of it, should be designed for the total capacity of two pump stations.
- 2.10 Example of Construction of System Head and Pump Capacity Curves to Determine Actual Pump Operating Capacities
- 2.10.1 The selection of the pumps is based on the analysis of system head and pump capacity curves, which determine the pumping capacities of the pumps operating alone and with the other pumps as the total dynamic head increases due to additional flow pumped through the force main.
- 2.10.2 Piping head losses should be calculated in accordance with the Hydraulic Institute Standards in connection with head losses through lift station piping and valves.
- 2.10.3 The C factors used in calculation of friction head losses should be based on both a C of 120 and C of 140. The pumps should be able to perform between the heads generated between these C factors.
- 2.10.4 The pump motors should be non-over loading over the entire range of pumping, including the ability to pump into the force main under a flooded wet well condition.

The water surface elevation for the flooded condition would be the rim of the lowest adjacent manhole, or the underside of the top slab, which is lower.


- 2.10.5 Refer to the section on Pump Design Conditions in the Design Guidelines Manual For Lift Stations and Force Mains.
- 2.10.6 This example of the system head and pump capacity curves is based on the following conditions:
 - Force main = single and twin 26-inch force mains
 - Length = 15,500 LF
 - Total flow ± 20.5 mgd
 - Total gpm = 20,500,000*1440 = 14,236 gpm
 - No. of pumps = 4 assuming one pump as standby
 - Minimum gpm per pump = 14236 divided by 3 = 4745 gpm
 - Select 4 5000 gpm pumps

2.10.7 Pump Curves

2.10.8 The pump performance curves represent the volume of liquid that can be pumped with a specified pump and impeller under a range of head conditions. The pump performance curves for the 5000-gpm pump used in this example are shown in Figure 1. It shows the gpm pumped in relation to the various head conditions and best efficiency point with impeller 510 and is tabulated as follows:

<u>GPM</u>	<u>Head</u>
0	124
1500	108
3000	93
4500	78
6000	63
7500	48
9000	33

- 2.10.9 The above values are plotted in Figure 2 and represent the pump capacity curve for a single pump.
- 2.10.10 Plotting Multiple Pumping Capacity Curves
- 2.10.11 The values for multiple pump capacities are also shown in Figure 2. These values are arrived at by constructing the 2nd and 3rd pump capacity curves as a multiple of the Pump No. 1 curve as shown in Figure 3:

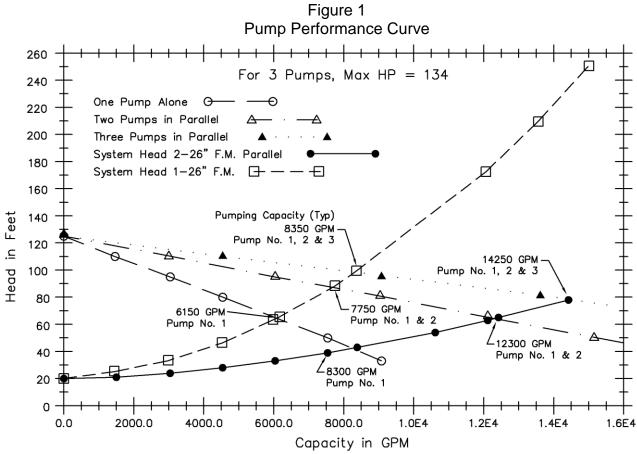


Figure 2
System Head & Pump Capacity Curve

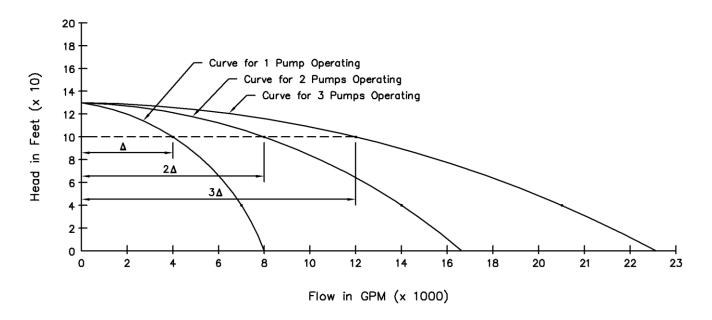


Figure 3
Typical Construction of Multiple
Pump Operating Curves

- 2.10.12 System Head Curve
- 2.10.13 The system head curve represents the TDH generated by a variety of flows through the proposed or existing force main and includes the static head. As the flows through the force main increase the TDH also increases.
- 2.10.14 The heads generated through the twin 26-inch force main are as follows:

Flow Through Force Main in GPM	TDH In Feet
0	21
1500	21
3000	24
4500	28
6000	33
7500	39
8300	43
10,500	54
12,000	63
12,300	65
14,250	79

2.10.15 The heads generated through a <u>single 26-inch</u> force main are as follows:

Flow Through	TDH
Force Main in GPM	<u>In Feet</u>
0	21
1500	24
3000	32
4500	45
6000	63
7500	65
8300	88
10,500	98
12,000	172
12,300	209
14,250	250

- 2.10.16 The values of the twin and single 26-inch force main are plotted on the system head and pump capacity curves as shown in Figure 2Represents the system head curves for the single 26-inch force main and for the twin 26-inch force mains.
- 2.10.17 Determine System Pumping Capacities For Multiple Pumps

- 2.10.18 The actual pumping capacities are determined by the intersection of the system head curves for single and twin 26-inch force mains with the pump capacity curves as shown in Figure 2.
- 2.10.19 The system pump capacities based on pumping into the single or twin 26-inch force main are shown as follows:

|--|

	Capacity	Total Pumping	
No. of Pumps	Increase GPM	Capacity in GPM	<u>TDH</u>
1	6150	6150	65
2	1600	7750	88
3	600	8350	98

Pump Capacities Using Twin 26-inch Force Main

	Capacity	Total Pumping	
No. of Pumps	Increase GPM	Capacity in GPM	<u>TDH</u>
1	8300	8300	43
2	4000	12300	65
3	1950	14250	79

- 2.10.20 The above values illustrate the wide range of the 5000-gpm pump over the range of system head conditions. A single pump ranges from 6150 to 8300 gpm. The maximum required total pumping rate of 20.5 mgd or 14,236 gpm is achieved by three pumps pumping into the twin 26-inch force main @ a maximum rate of 14250 gpm.
- 2.11 Wet Well Design
- 2.11.1 The wet well top slab shall be in compliance with "Rules and Regulations for Chapter 19, Guidelines Houston City Code Floodplain", latest revision.
- 2.11.2 Minimum Wet Well Volume
- 2.11.2.1 The minimum required volume of wet well storage occurs when the flow into the wet well is one half the maximum inflow. In order to calculate this volume a minimum cycle time between starts of 6 minutes should be used for motors less than 50 H.P. so that the motor will have a maximum of 10 starts per hour. The cycle time for pump motor horse power between 50 and 100 H.P. should be 10 minutes and the cycle time for pump motors over 100 H.P. should be 15 minutes. The formula for minimum wet well volume is:

$$V = (T_{min} \times Q_P) / (4 \times 7.5 \text{ gal/cf})$$

Where: $T_{min} = minimum cycle time in minutes$

Q_P = pump capacity in gpm V = volume in cubic feet

- 2.11.2.2 An example calculation to determine the minimum wet well volume is provided below. This example illustrates the wet well volume requirements for a 4 pump station using the following parameters:
 - Max flow = 2370 gpm or 3.41 mgd
 - No. of pumps = 4
 - Pump capacities = 4 @ 800 gpm
 - Cycle time = 6 minutes
 - 12-inch force main, 1600 feet long
 - Wet well surface area = 120 sf
- 2.11.2.3 The first step would be to develop a system head curve, which will show the actual pumping capacities, based on the variable friction heads generated in the force main as each pump is turned on. Based on the system head curve pump No. 1 would pump 1080 gpm, pump No. 1 and 2 would pump 1980 gpm, and pump No. 1, 2 and 3 would pump 2370 gpm. Pump No. 4 is a standby.
- 2.11.2.4 The wet well volume and corresponding pumping range in feet to accommodate the 6 minute cycle for each pump as they are turned on is:

For Pump 1, V-1 =
$$6.0 \text{ min. } \times 1080 \text{ gpm} = 217 \text{cf}, H_1 = 1.8'$$

7.48 gpm/cf x 4

For Pump 2,
$$V-2 = 6.0 \text{ min. } x (1980-1080) = 180 \text{cf}, H_2 = 1.5'$$

7.48 gpm/cf x 4

For Pump 3,
$$V-3 = \underline{6.0 \text{ min. x } (2370-1980)} = 78\text{cf}, H_2 = 0.7'$$

7.48 gpm/cf x 4

Total Wet Well Volume =
$$475cf$$
, Total H = ± 4 '

2.11.2.5 The following Table 2 shows the water levels (WL), and the heights (H) that water level rises or falls between pump stop and start, and indicates the pump status (either off or on).

Table 2

PUMP CONTROL SCHEDULE EXAMPLE

		Rising	g Water Level	<u> Falling</u>	Water Level
WL Elev.	<u>Δ H</u>	<u>Action</u>	Pump Station	<u>Action</u>	Pump Status
4.00	-	P-3 on	P-1, P-2 & P-3 on	-	P1, P-2 & P-3 on
3.30	0.7	P-2 on	P-1 & P-2 on	P-1 off	P-2 & P-3 on
1.80	1.5	P-1 on	P-1 on	P-2 off	P-3 on
0.00	1.8	-	All Stop	P-3 off	All Stop

- 2.11.2.6 A typical section showing the start and stop control levels in a wet well is shown in Figure 4 on the following page.
- 2.11.3 Interior wet well design. Determine the required size for the ports in the baffle wall. The dimensions of the ports should be stated on the structural drawings. Size ports such that the velocity through all ports at firm station capacity is greater than 4.5 fps and less than 6.5 fps.

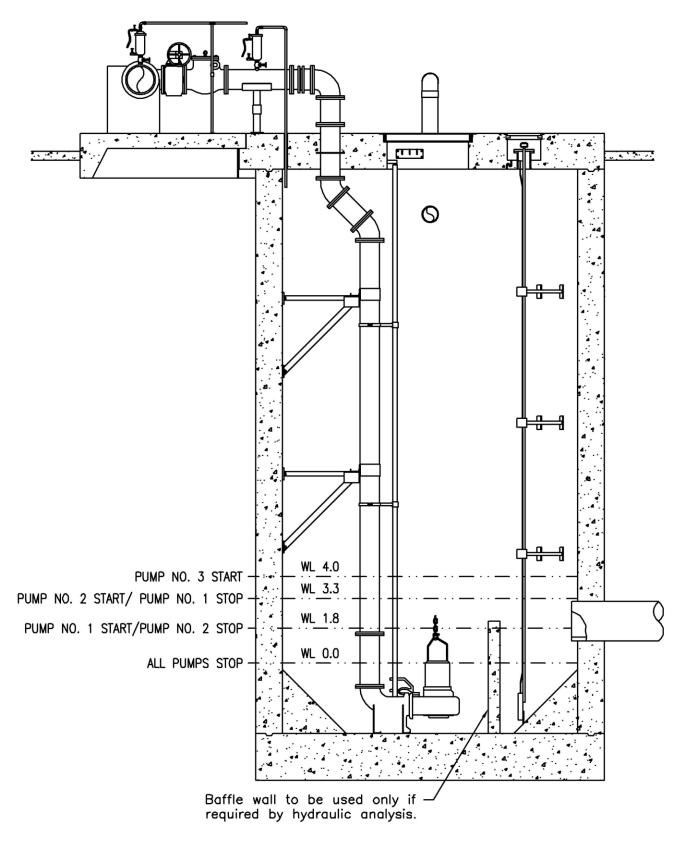


Figure 4
Typical Wet Well Elevation Showing Pump Control Levels

- 2.12 Surge Pressure in a Force Main: Surge pressure or "Water Hammer" in a force main is created by any change from a steady state flow condition, and may range from only slight pressure and/or velocity changes to sufficiently high vacuum or pressure conditions which may cause the collapse or rupture of the pipeline, or cause damage to pumps and/or valves. Water hammer is typically caused by the opening, closing or regulating of valves; or by the starting and/or stopping of pumps. The magnitude of the surge pressure created is a function of the following:
 - 1. A change in the velocity of flow.
 - 2. The density of the fluid.
 - 3. The speed of the pressure wave within the fluid and piping system.
- 2.12.1 Velocity of Pressure Wave: The speed or velocity of the pressure wave is a function of the following factors:
 - 1. Pipeline material (steel, cast iron, ductile iron, plastic, etc.)
 - 2. Pipeline wall thickness
 - 3. Pipeline diameter
 - 4. The specific gravity and bulk modulus of the fluid being pumped.

The relationship of these various factors is expressed in the following equation:

$$a = \sqrt{[1 \div (w/g) * (1/K + D/e * C_1/E^1)]}$$

<u>Where</u>: a = Pressure wave speed, expressed in feet per second (ft/sec)

D/e = A dimensionless ratio of the pipeline diameter to its wall thickness.

E¹ = Young's Modulus of Elasticity for the pipeline material, expressed in pounds per square foot (lb/sf) and which for steel pipe is 4,390,000,000 lb/sf; for cast iron pipe is 1,730,000,000 lb/sf; and for ductile iron pipe is 3,456,000,000 lb/sf.

 $K = Bulk Modulus of water, expressed in lb/sf and which is 43,200,000 lb/sf at 20<math>^{\circ}$ C.

w/g = Mass density of water, expressed in slugs per cubic foot which is 62.4/32.2 = 1.938 slugs/cf.

C₁ = Coefficient of pipe support condition, which is dependent on Poisson's ratio (mu), which for most pipe materials the accepted mu = 0.3.

Note: The usual range of C₁ is 0.85 to 1.25 and is determined as follows:

C₁ for a pipe anchored at one end only, while the other end is

free = 5/4 - mu = 0.95.

 C_1 for a pipe anchored at both ends = 1 - $(mu)^2$ = 0.91.

 C_1 for a pipe anchored at both ends with an expansion joint between anchors = 1 – mu/2 = 0.85.

In addition, the pressure wave speed in water is usually in the range of 3000 to 4000 ft/sec, and using a value of 3500 ft/sec is generally sufficient for approximations.

2.12.2 Approximate Wave Speeds Examples Pipes: The following Tables 3, 4 and 5 show approximate wave speeds in various types of pipe based on the Modulus of Elasticity (E) as shown and Poisson's ratio (Mu) at the value of 0.3.

TABLE 3
WAVE SPEED IN STEEL AND CAST IRON PIPES

	Wave Speed ft/sec.		
D/e ratio	Steel Pipe E=30 X 10 ⁶ psi	Cast Iron Pipe E=12 X 10 ⁶ psi	
	E=30 X 10 ⁶ psi	E=12 X 10 ⁶ psi	
0.5	4050	0750	
25	4250	3750	
50	3900	3250	
75	3600	2900	
100	3400	2600	
150	3000	2250	
200	2750	2000	

TABLE 4
WAVE SPEED IN HOBAS PIPES

D/e ratio	Wa ^s Class 50 psi <u>E=0.5 X 10⁶psi</u>	ve Speed ft/sec. Class 100 psi <u>E=1.2 X 10⁶psi</u>	Class 250 psi <u>E=2.8 X 10⁶psi</u>
12	1720	2450	3200
16	1510	2200	2950
20	1370	2000	2750
25	1230	1830	2550
50	890	1350	1950
75	730	1110	1640
100	630	970	1440
	TABLE 5	5	

WAVE SPEEDS IN OTHER PLASTIC PIPES

Wave Speed ft/sec. D/e ratio H.D. Polyethylene Pipe Other Plastic Pipe E=0.113 X 10⁶psi E=1.20 X 10⁶psi 12 860 1130 16 750 990 20 670 890 25 603 800 50 428 570 75 350 460 100 300 400

2.12.3 Surge Pressure - Sudden Flow Stoppage: The magnitude of surge pressure per unit change in the velocity of flow is expressed by the following equation, for the sudden or instantaneous stoppage of flow:

$$h_w = av \div g$$

Where: $h_w = pressure rise expressed in feet$

a = pressure wave speed expressed in ft/sec

v = flow velocity of the pumped fluid in ft/sec

 $g = 32.2 \text{ ft/sec}^2$

Thus, if a liquid is flowing at a velocity of 10 ft/sec through a pipeline and is brought to a sudden stop, the increase in pressure, or surge pressure, using a pressure wave speed of 3500 ft/sec is determined as follows:

$$h_w = av \div g$$
 = 3500 ft/sec x 10 ft/sec \div 32.2 ft/sec²
= 35,000 ft²/sec² \div 32.2 ft/sec² = 1087 ft
1087 ft \div 2.31 ft/psi = 470.56 psi

2.12.4 Surge Pressure - Change in Flow: If the velocity of flow within the force main is changed, but not completely stopped, the surge pressure rise is expressed by the following equation:

$$h_w = a/g (v_1 - v_2)$$

<u>Where:</u> v_1 = original steady flow velocity expressed in ft/sec

 v_2 = final steady flow velocity expressed in ft/sec

Thus, if a liquid is flowing at a velocity of 8 ft/sec while being pumped by two pumps, then one pump is stopped resulting in a flow velocity of 4 ft/sec, the increase in pressure or surge pressure, using a pressure wave speed of 3500 ft/sec is determined as follows:

$$h_w = a/g (v_1 - v_2) = \frac{3500 \text{ ft/sec}}{32.2 \text{ft/sec}^2}$$
 (8ft/sec - 4 ft/sec)
= 108.7 1/sec (4 ft/sec) = 434.8 ft
434.8 ft ÷ 2.31 ft/psi = 188 psi +

It should be noted that as a "Rule of Thumb" the above equations, $h_w = av \div g$ and $h_w = a/g (v_1 - v_2)$, will yield a surge pressure of approximately 100 ft of water (43.3 psi) per each 1 fps change in velocity.

2.13 Comparison: Surge Analysis by Computer Program

It should be noted that the above equation represents the maximum surge pressure possible for a given situation. The equation works well for simple one-pipe situations where near instantaneous flow velocity changes occur. In more complex situations, such as pumping stations or pipe networks, the use of this equation may tend to predict excessive pressures. These predictions then often lead to over design of pumping stations, pipelines, etc., which unnecessarily drives up project costs.

A more detailed analysis using a computer model will often provide a lesser, but more accurate, design pressure and also provide insight into other potential problems such as minimum and negative pressures predicted as well as the potential cavitation locations within a pipeline. The more accurate design pressures may allow the designer to specify less costly materials while still maintaining an appropriate safety factor. In complex situations, the cost of a thorough computer analysis is usually justified by total project savings. An example comparing the two methods is given below:

Using the data for Example No. 1 (Section 2.15), the surge pressures predicted by the above equation are 294 psi.

By constructing a simple computer model, the predicted pressures drop to 230 psi.

By constructing a somewhat more complex computer model, the predicted pressures drop further to 137 psi.

- 2.14 Surge Pressure Considerations
- 2.14.1 Pipeline Length: For pipelines of infinite length, surge pressures resulting from variations in the velocity of flow through the pipeline are not affected in magnitude by the rate at which the velocity of flow is changed. However, this effect is not true in pipelines of finite length. This difference is significant in surge pressure phenomena in actual pipelines.
- 2.14.2 Wave Reflection: In actual pipeline situations, surge pressure problems can become somewhat more complex because the end of the pipeline institutes the mechanism of wave reflection. That is, when the pressure wave reaches the end of the force

main, it reverses direction and a wave of increased pressure travels back to the pumps or valve, where reversal of the pressure wave takes place again and a second pressure wave of reduced magnitude travels the length of the pipeline. This is repeated until steady state is reached.

- 2.14.3 Pipeline Friction: Pipeline friction helps to decelerate the pressure wave velocity, thus each time the pressure wave travels along the length of the pipeline in either direction, its velocity in the pipeline decreases. The change in velocity of the pressure wave is expressed by the following equation: Δv = Gh/a, where, h is the difference in head (pressure) at the two ends of the force main plus the friction head, at the average velocity of the pressure wave, during the passage of the wave.
- 2.14.4 Sudden Change in Flow Conditions: A change in flow conditions within a force main is considered to be "sudden" if the change is completed within the time required for the surge pressure wave to travel the length of the force main, be reflected, and return to the point of origin. This time period for the surge pressure wave to make a round trip is referred to as the "critical period" of the force main and is expressed by the equation t = 2L/a, where L = the distance between the point of flow change, i.e. pumps or valve, and the point of wave reflection. The maximum surge pressure occurs at the point of velocity change, regardless of the rate of change in velocity.
- 2.14.5 Gradual Change in Flow Conditions: A change in flow conditions with a force main is considered to be "gradual" if the change is completed in a period, which is greater than the "critical period". This scenario may be considered as a series of flow velocity changes, each produced in a time equal to or less than 2L/a. For "n" increments of change in velocity within the initial period of 2L/a:
 - 1. The greatest incremental pressure change will result from the largest incremental change in velocity.
 - 2. The total pressure change during the first interval of 2L/a will be the sum of the "n" incremental changes in pressure that occurred during the initial interval.

The maximum surge pressure change may, however, occur after the first 2L/a interval and should be determined from an accurate analysis of the direct and reflected impulses as performed by a graphical or computer model analysis.

2.14.6 Potential Severity of Surge Pressure: In assessing the potential severity of a possible surge pressure situation, it is necessary to determine whether the change in flow conditions are to be considered as "sudden" or "gradual". As an example, if the length of force main being considered is 1500 feet, the wave velocity is assumed to be 3500 ft/sec, the "critical period" is determined to be 2L/a = 2 x 1500 feet ÷ 3500 ft/sec = 0.9 seconds. Since it is practically impossible to intentionally produce a significant change in velocity within 1 second or less, in pipeline sizes typically encountered, the "sudden" change case most likely will not occur, and therefore maximum surge pressures are not likely to occur. This is very characteristic of "short" force mains and with the exception of possible slamming of check valves,

these force mains are seldom of concern, and would not require any surge relief valves or other devices.

On the other hand, as an example, if the length of force main being considered is say 20,000 feet, and the wave velocity is still assumed to be 3500 ft/sec, then the "critical period" is determined to be $2L/a = 2 \times 20,000$ ft \div 3500 ft/sec = 11.4 seconds. Under this scenario, a substantial change in the flow velocity can be achieved within this time and is likely to be of serious concern.

- 2.14.7 Probable Effects of Surge Pressure: The following brief discussion is presented to assist in ascertaining the probable effects of surge pressure by classifying the physical characteristics of the force main. Identification of the initial cause of the change in flow from the steady state must be made. The three most frequently encountered probable causes are:
 - 1. The opening/closing of a valve.
 - 2. The starting/stopping of a pump.
 - The failure of the force main.

Typically, the manual or automatic operation of valves cannot cause a "sudden" change in the flow conditions and cause a surge pressure of concern. Pumping systems, however, are more often of a more serious concern and typically have two types of problems associated with them:

- 1. The starting/stopping of the pumps under normal operating conditions.
- 2. The pump operation under power failure conditions.

Under normal operating conditions the change in flow conditions are typically controlled by valves in the pump discharge line, and may be considered as a control valve condition, which would not cause a "sudden" change in the flow condition or cause a surge pressure of concern.

In a power failure condition the pumps may initiate and cause a surge pressure. If the probable effect of surge pressure is serious, according to the criteria presented above, a detailed analysis by experts is recommended.

Additionally, if a pump discharge valve closes "suddenly", before the forward movement of the water column stops, cavitation of the water column may occur. Cavitation may also occur at high points in the force main during the initial phases of pressure loss in the system. Vapor cavities formed under these conditions are typically closed with violent impact upon reversal of the flow and can result in extremely high surge pressures. The analysis of surge pressures associated with cavitation requires a detailed computer analysis.

Likewise, a failure of the force main can cause complex surge pressures the analysis of which would best be accomplished by performing a detailed computer analysis by an expert in the field.

2.14.8 Classification of Pumping Systems: Table 6 is a simple classification of pumping systems into two categories "A" and "B". Surge problems occurring under category "A" situations are typically of minor concern and usually occur with great frequency in actual practice. The severity of the surge problems associated with the category "A" situations may be determined from the checklist presented as Table 7.

TABLE 6
CLASSIFICATION OF FORCE MAINS IN PUMPING SYSTEMS

1.	Type of System	А	В
	A. Single pipeline of uniform size	Х	
	B. Single pipeline of more than one size		Х
C. Two or more parallel lines			Х
	D. Single or parallel system connected to a distribution grid		Х
2.	Profile of System		
	A. Relatively flat or gradual ascending slope	Х	
	B. Steep slope (length less than 20 times the pump head)		Х
	C. Intermediate high Points		Х
	D. Intermediate pumps or tanks		Х
3.	Pump Suction conditions		
	A. Suction direct from suction well	X	
	B. Suction line in which the critical period (2L/a) is 1 second or less	Х	
	C. Suction line in which the critical period (2L/a) is greater than 1 second		Х

If the pumping system to be analyzed contains any items listed under category "B", it is recommended that the system be referred to experts for analysis.

If the pumping system to be analyzed contains only items listed under category "A", proceed to Table 7.

TABLE 7
CHECK LIST FOR FORCE MAINS OF CATEGORY "A" ITEM ONLY

YES NO

1.	Is "Critical Period" greater than 1.5 seconds?	
2.	Is the maximum flow velocity in the force main greater than 4.0 ft/sec?	
3.	Will any check valve in the force main close in less than the "critical period" (2L/a)?	
4.	Will the pump or motor be damaged if allowed to run backwards, up to full speed?	
5.	Is the factor of safety for the force main less than 3.5 under normal operating conditions?	
6.	Are there any automatic quick closing valves in the force main set to open/close in less than 5 seconds?	
7.	Are there any automatic valves within the pumping system that become inoperative due to loss of pumping system pressure?	
8.	Will the pump(s) be tripped off prior to full closure of the discharge valve?	
9.	Will the pump(s) be started with the discharge valve open?	

If the answer to <u>any one</u> of the above questions 1 thru 6 is yes, there is reason for concern regarding surge pressures. If <u>two or more</u> of the above questions 1 thru 9 are answered yes, the situation is likely to be serious and the degree of severity will be in proportion to the number of yes answers.

2.15 Examples of Surge Pressure in a Force Main

The following are examples to illustrate the use of Tables 6 and 7 (Section 2.14.8) as well as the various equations presented previously, which are intended to assist in determining the probable effects of surge pressures.

2.15.1 EXAMPLE NO. 1

2.15.1.1 Design Data:

1. Pumps: Three (3) identical units (1 standby),

Rated Flow (each) = 5000 gpm (7.2 mgd).

Station Design Capacity = 10,000 gpm (14.4 mgd).

Assumed Pump Rundown Time Under Full Head = 1.5 Seconds.

Rated Discharge Head = 78 Feet.

2. Force Main: 26-inch Diameter Steel Pipe, Length = 8000 Feet.

3. Valves: 24-inch C.I. Plug Valves (suction side).

18-inch C.I. Plug Valves (discharge side). 18-inch Swing Check Valves (discharge side).

4. Pump Suction: Suction directly from wet well through 24-inch diameter

suction pipe $(2L/a) = 2 \times 15/3500) = < 1$ second

2.15.1.2 Data for Surge Pressure Analysis:

- 1. Steady State Conditions:
 - a. Flow = 14.4 mgd = 22.3 cfs
 - b. Velocity = 6.24 ft/sec
 - c. Total Head = 78 feet
 - d. Static Head = 5 feet
- 2. Critical Period:
 - a. Wave Velocity, a = 3500 ft/sec (assumed)
 - b. $2L/a = 2 \times 8000/3500 = 4.5 \text{ sec}$
- 3. Force Main Profile:
 - a. No Intermediate High Points
 - b. Relative Slope = $L/\Delta H = 8000/80 = 100 > 20$
- 4. Cause of initial surge pressure = power failure.

- 5. Sudden or gradual velocity change = sudden, since the assumed pump run down time of 1.5 seconds is less than the critical period of 4.5 seconds.
- Maximum Surge Pressure Anticipated:

$$h_w = av \div g$$
 = 3500 ft/sec x 6.24 ft/sec \div 32.2ft/sec²
= 21,840 ft²/sec² \div 32.2 ft/sec²
= 678.3 feet (294 psi)

2.15.1.3 Classification of Force Main:

Using Table 6, all applicable items fall under the "A" category, therefore, proceed to Table 7.

2.15.1.4 Force Main Check List Items:

Items receiving "yes" answers:

- No. 1. Critical period greater than 1.5 seconds.
- No. 2. Flow velocity greater than 4.0 ft/seconds.

Items receiving "questionable" answers:

- No. 3. Closure of check valve less than the critical period (4.5 seconds)
- No. 4. Will pump and/or motor be damaged by reverse rotation.

This example indicates that there is a potentially serious surge pressure condition that could occur due to the possible sudden closure of the check valve(s). Additionally, it indicates that there may be a concern regarding the potential damage that could be caused by reverse rotation of the pump and/or motor along with a possible need to review this condition with the manufacturer.

- 2.15.2 EXAMPLE NO. 2
- 2.15.2.1 Design Data: Same as for Example No. 1
- 2.15.2.2 Data For Surge Pressure Analysis:
 - 1. Steady State Conditions:

a. Flow
$$Q_1 = 14.4 \text{ mgd} = 22.3 \text{ cfs}$$

 $Q_2 = 7.2 \text{ mgd} = 11.1 \text{ cfs}$

- b. Velocity $v_1 = 6.24 \text{ ft/sec}$ $v_2 = 3.12 \text{ ft/sec}$
- c. Total Head = 78 feet
- d. Static Head = 5 feet
- 2. Critical Period: Same as for Example No. 1
- 3. Force Main Profile: Same as for Example No. 1
- 4. Cause of initial surge pressure = Loss of power to one of the two pumps running.
- 5. Sudden or gradual velocity change = sudden, since the assumed pump rundown time of 1.5 seconds is less than the critical period of 4.5 seconds.
- Maximum Surge Pressure Anticipated:

$$h_w = a/g (v_1 - v_2) = \frac{3500 \text{ ft/sec}}{32.2 \text{ ft/sec}^2} (6.24 \text{ ft/sec} - 3.12 \text{ ft/sec})$$

= 108.7 1/sec (3.12 ft/sec)
= 339 feet (147 psi)

2.15.2.3 Classification of Force Main:

Using Table 6, all applicable items fall under the "A" category, therefore, proceed to Table 7.

2.15.2.4 Force Main Check List Items:

Items receiving "yes" answers:

- No. 1. Critical period greater than 1.5 seconds.
- No. 2. Flow velocity greater than 4.0 ft/sec initially.

Items receiving "questionable" answers:

- No. 3. Closure of check valve in less than the critical period of 4.5 seconds.
- No. 4. Will pump or motor be damaged by reverse rotation.

2.15.2.5 This example indicates that there is a potentially serious surge pressure condition that could occur due to the possible sudden closure of the check valve(s). Additionally it indicates that the severity of the surge pressure will be less than if both pumps were suddenly shut down. It also indicates that there may be a concern regarding the potential damage that could be caused by reverse rotation of the pump and/or motor along with a possible need to review this condition with the manufacturer.

2.15.3 EXAMPLE NO. 3

2.15.3.1 Design Data:

1. Pumps: Two (2) identical units (1 standby)

Rated Flow (each) = 3000 gpm (4.3 mgd)

Station Design Capacity = 3000 gpm (4.3 mgd)

Assumed Pump Rundown Time under full head = 1.5 seconds.

Rated Discharge Head = 55 feet

- 2. Force Main: 26-inch diameter steel pipe Length = 6500 feet
- 3. Valves: 16-inch C.I. plug valves, manually operated on suction and discharge of pumps.
- 4. Pump Suction: Suction directly from wet well through 16-inch diameter suction pipe $(2L/a) = (2 \times 15/3500) = <1$ second.

2.15.3.2 Data For Surge Pressure Analysis:

- 1. Steady State Conditions:
 - a. Flow = 4.3 mgd = 6.65 cfs
 - b. Velocity = 1.87 ft/sec
 - c. Total Head = 55 feet
 - d. Static Head = 5 feet
- Critical Period:
 - a. Wave Velocity, a = 3500 ft/sec (assumed)
 - b. $2L/a = 2 \times 6500/3500 = 3.7 \text{ sec}$
- Force Main Profile:
 - a. No intermediate high points.
 - b. Relative slope = $L/\Delta H = 6500/55 = 118>20$
- 4. Cause of initial surge pressure = Power failure.
- 5. Sudden or gradual velocity change = Sudden, since the assumed pump

rundown time of 1.5 seconds is less than the critical period of 3.7 seconds.

Maximum Surge Pressure Anticipated:

$$h_w = av \div g = 3500 \text{ ft/sec } \times 1.87 \text{ ft/sec} \div 32.2 \text{ ft/sec}^2$$

= 6545 ft²/sec² ÷ 32.2 ft/sec²
= 203.3 feet (88 psi)

2.15.3.3 Classification of Force Main:

Using Table 6, all applicable items fall under the "A" category, therefore proceed to Table 7.

2.15.3.4 Force Main Check List Items:

Items receiving "yes" answers: No. 1 Critical period greater than 1.5 seconds.

Items receiving "questionable" answers: No. 4 Will pump and/or motor be damaged by reverse rotation.

2.15.3.5 This example indicates that there is a potentially minor surge pressure condition that could occur due to the shut down of the pump on a loss of power. It also indicates that there may be a concern regarding the potential damage that could be caused by reverse rotation of the pump and/or motor along with a possible need to review this condition with the manufacturer.

2.16 Surge Relief Valves

Surge relief valves are typically installed at pump stations to protect the pumps, piping, valves and other equipment from potential damage from surge pressures. Surge relief valves should be sized to release the excess surge flows through the valve either on the basis of system flow or so that the inlet pressure measured at the relief valve will be lower than the lowest pressure rating of the pumping equipment.

All manufacturers of surge relief valves have a value size selection chart in their catalog for the purpose of selecting the proper sized valve for the force main system, or portion thereof, to be protected. Figure 5 is an example of a valve size selection chart, which is reproduced from the GA Industries, Inc. Catalog No. GA-2000.

Surge relief valves are to be located downstream of the pump control valve/check valve or on the main discharge header as close to the pump(s) as practical. Surge relief valves typically discharge back into the wet well.

Consideration should be given to providing two or smaller sized valves having a total combined relieving capacity equal to or greater than a single larger sized

valve, especially when there is more than one pump discharging into a common header. A surge relief valve may be utilized on each pump discharge line or several valves may be provided on the common discharge header.

When several valves are provided, it is advisable that each valve's pressure setting be slightly higher than the adjacent valve allowing the valves to open in sequence instead of all at once. It should be noted that all surge relief valves are field adjustable and their relief pressure setting range is determined when the valves are ordered from the manufacturer.

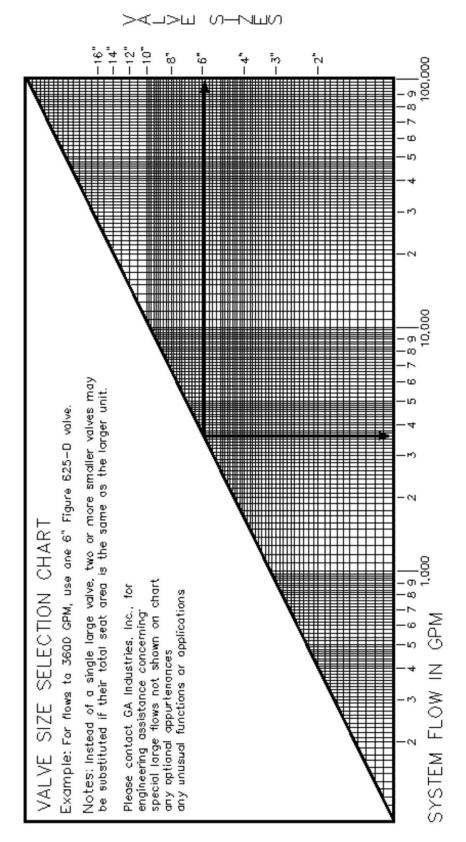


Figure 5
Example of Surge Relief Valve Size Selection Chart

- 2.17 Pipeline Design
- 2.17.1 Refer to the latest edition of the City of Houston "Design Guidelines for Lift Station and Force Mains" for additional design criteria.
- 2.17.2 Pipeline velocity higher than 6 fps should be checked for possible high and low negative surge pressures during a power failure when all running pumps stop suddenly.
- 2.17.3 The length of the pipeline should be kept as short as practical to decrease the detention time and odor generation.
- 2.17.4 The vertical alignment of pipeline should avoid a steep slope of pipe near the pump station followed by a long stretch of flat grade. This type of alignment is often the cause of column separation. See Figure 6. A rising pipe followed by a falling one will require an air vent to be installed at the summit.

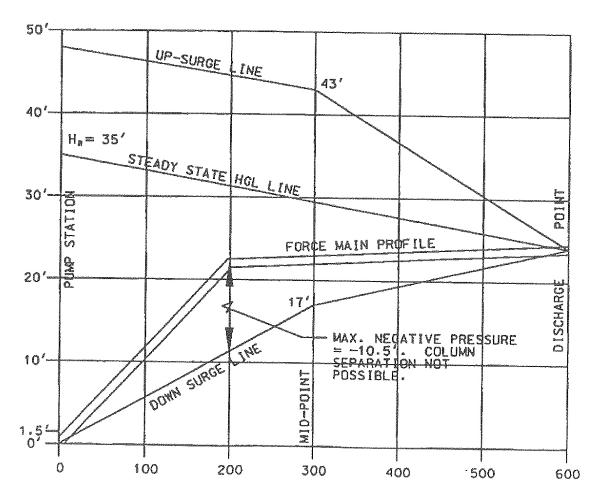


Figure 6
Example of Column Separation Determination

2.17.5 Pipeline passing through peaks and valleys require vents at the high point and drains in the low point. Such pipe profiles should be checked very carefully for air

entrapment and air release. Either one could cause high surge pressure due to improper selection of air valve sizing. Also, the static head of a pipeline having ups and downs with entrained air pockets should be carefully checked. Under certain conditions the static head of each water column should be added cumulatively, even through they appeared to be canceling each other. See Figure 7.

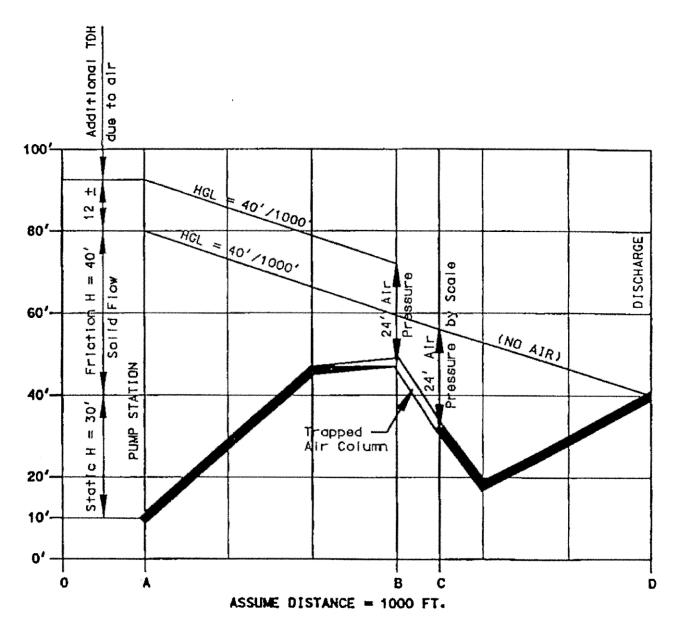


Figure 7
Effect of Air Entrapment on Pump TDH

2.18 Check Valves

- 2.18.1 For pump system head of 30 psi or less, the maximum velocity through a non-spring loaded or counter-weighted check valve should not exceed 3 fps. It may be increased to 5 fps for check valves, which are spring loaded or counter weighted to prevent valve slamming. For pump system head higher than 30 psi cushioned swing check valves should be used. However, cushioned swing check valves do not eliminate pressure surges when the valve closes suddenly. It only reduces the slamming noise.
- 2.18.2 One valve manufacturer recommends that the counter-weight arm should be installed in a horizontal position when fully closed if the valve will open to an upward angle of 45 degree at the maximum operating capacity. The arm may be installed at a 30 degree downward angle if the valve will open to an upward angle of 60 degrees or more at the maximum operating capacity. This is important in order to ensure that valve will be fully closed before the pressure wave returns to the valve location.
- 2.18.3 When pumps are stopped suddenly, as during a power failure, the pressure inside the force main will rise when the return pressure wave reaches the closed check valve. The amount of pressure rise may be any where between 40 to 70 percent above the normal pump operating head. Power operated check valves are sometimes used to control the pressure rise at the pump to a minimum.
- 2.18.4 The following standards should be used unless they are verified to the contrary by computer surge analysis.
 - a) The force main pipe should be specified to be capable of sustaining a negative pressure of -8 to -10 psig. The maximum surge allowance of the pipe should be about 70% of the maximum operating pressure when swing check valves are used.
 - b) In a high-pressure pumping system where the amount of pressure rise is severely limited, power-operated check valves should be considered. By proper selection of the valve closing time, pump back-spinning can be prevented.
 - c) A system where zero pressure rise is desired can be achieved by allowing sewage to return to the wet well while the check valve is closing slowly. Under such condition the maximum reverse speed of the pump must be estimated and clearly stated in the project specifications.
- 2.19 Shut-off Valves: Plug valves or resilient-seat, solid-wedge gate valves should be used for shut-off service in a sewage force main application when the liquid being pumped contains gritty material. Outside Yoke and Screw (OY&S) rising stem gate valves are preferred by some operators to Non-Rising Stem (NRS) gate valves because their gate positions can be readily identified. Because of the conventional type of packing that is used in OY&S gate stem seals they may require occasional adjustment.

2.20 Blow-off Valves

Low points in a sewage force main should be provided with a blow-off valve especially when the sewage contains grit and other inorganic solids and the pipe slopes of the falling and rising legs are steep. The blow-off liquid may be drained to a nearby gravity sewer or be hauled away in a tank truck. If pumps can be operated once each day to provide the required flushing velocity un-interruptedly for such a duration that the volume inside the falling and rising legs can be replaced with the fresh sewage the blow-off valve may be omitted.

2.21 Air and Vacuum Valves

Sewage pump station design utilizing submersible pumps will usually have the check valves installed closer to the ground surface for easy maintenance. Such arrangement frequently requires an air and vacuum valve to be installed on the pump side of the check valve to prevent vacuum pressure being developed inside the vertical riser pipe when the pump stops; and to allow the air to be completely vented to the atmosphere with little or none being passed into the force main through the check valve. When the difference in elevation between the low wet well water level and the top of the discharge pipe, at the check valve, is less than 25 feet, air and vacuum valves may be omitted. On longer riser pipes air and vacuum valves must be installed and the following procedures may be followed in computing the valve size required:

- Step 1. Determine the vertical distance in feet between the check valve and the minimum water level. If it is less than 10 feet, no vacuum relief valve is required.
- Step 2. Determine the maximum pump operating capacity in cfs. Convert pump capacity in gpm to cfs by dividing by 448. This should be equal to the required valve venting capacity.
- Step 3. Select the required valve size from an Air Vacuum Valve Discharge Capacity Chart similar to the one shown in Figure No. 8. Valve manufactures normally recommended 2.0 psig as the design outflow pressure; this could be reduced to 1.0 psig when frictional head loss through shut-off valve and vent pipe is included.

Example: Determine the size of an air and vacuum valve required to vent the air volume inside 30 feet of 16-inch riser pipe between the check valve and the minimum pumping level in the wet well, assume the maximum pump discharge capacity is 5.0 mgd (7.75 cfs).

Vertical Distance of riser pipe = 30.0 feet Actual pump capacity, or valve vent capacity = 7.75 cfs

Valve venting capacity from Manufacturer's Data:

```
1" Valve = 2.0 cfs
2" Valve = 5.0 cfs
3" Valve = 10.0 cfs
4" Valve = 13.0 cfs
6" Valve = 32.0 cfs
```

Valve size Selected = 3.0 inches.

Since the vertical distance is greater than 10 feet, a vacuum and air release combination valve should be specified.

Sewage type air vacuum valves should be used in sewage pump station applications. These valves are furnished with flushing-out hose connections.

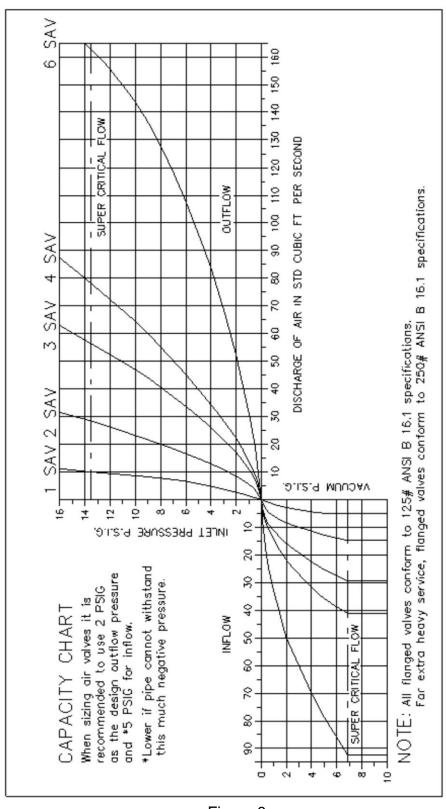


Figure 8
Air Vacuum Valve Capacity Chart

2.22 Provisions for Lift Station By-Pass

The lift station design should include provision to install temporary pumps and the connection of these pump to the lift station force main. Typically this is accomplished by placing a "Tee" on the force main on the lift station site and installing a valve on the branch of the "Tee". It is preferred to install a by-pass "Tee" and valve in a manhole on the lift station site.

- 2.23 Site Requirements
- 2.23.1 Lift station site evaluation needs to include assessment of the following:
- 2.23.1.1 Visual impact on the neighborhood. Sufficient setback from the property line to the fence line should be provided to accommodate the required landscape buffer. In all cases, setback from property lines as governed by COH ordinances should be followed.
- 2.23.1.2 Access to the site for lifting equipment to provide sufficient pavement area and clearance to accommodate full movement and operation as may be required to lift pumps selected for the specific site.
- 2.23.1.3 Sufficient pavement area to allow turnaround of a 1-1/2 ton truck within the fenced area. Provide entrance gate with sufficient setback to allow entrance of 1-1/2 ton truck without blocking the main roadway. The requirement may be relaxed for very large sites.
- 2.23.1.4 Generally, the entire site within the fenced area is paved. Locate the fence one foot inside the paved area. Where adjacent to existing structures, locate the fence further in the site to provide a minimum 6-foot clearance for grounds maintenance.
- 2.23.1.5 Consideration for future chemical feed and storage facilities; including access, sufficient pavement area and clearance to accommodate full movement and operation of a chemical delivery truck should be part of the odor and corrosion control analysis.
- 2.23.1.6 Clearance for construction and maintenance.
- 2.23.1.7 Site Security
- 2.23.1.8 Odor potential and impact to the neighborhood
- 2.23.1.9 Structure depth and its potential impact on adjacent areas.
- 2.23.2 Site Size
- 2.23.2.1 At least 20 feet clearance between all sides of the lift station facilities and fence line should be provided where feasible.
- 2.23.2.2 Site size is function of facility capacity. The Table 8 should be considered the minimum guideline for site size of various diameters of lift station wet wells.

Table 8

Lift Station Configuration Pump Ranges, Capacity Ranges, Discharge Piping, Wet Well Size and Site Size

Number of Pumps	Individual Pump Capacity – GPM		Lift Station Firm Design Capacity – GPM		Pump Discharge Piping - Inches		Minimum Wet Well Diameter - Feet	Minimum Site Size
	From	То	From	То	From	То		
2	0	199	0	199	4	4	6' - 0"	55' x 55'
2	200	499	200	499	4	8	8' – 0"	55' x 55'
2	500	999	500	999	8	10	10' – 0"	70' x 70'
3	250	500	500	999	6	10	10' – 0"	70' x 70'
3	500	999	1000	1998	8	10	12' – 0"	75' x 75'
3	1000	1399	2000	2798	10	12	14' – 0"	75' x 75'
3	1400	1999	2800	3998	12	16	16.5' – 0"	75' x 75'
3	2000	3499	4000	7198	16	24	21' – 0"	85' x 85'
4	800	3499	2400	10,497	10	20	21' – 0"	85' x 85'
5	2500	3999	7500	15,996	18	20	25' – 0"	85' x 85'
6	3000	5299	15,000	21,196	18	20	28' – 0"	90' x 90'

Note: This table has not been coordinated with the City of Houston Design Guideline Drawings for Submersible Pump Lift Stations dated 1996. These drawings are currently being revised and will be issued at a later date.

- 2.23.3 The site of the lift station should generally be located on a full parcel. Lift stations should not be located in:
- 2.23.3.1 Street right-of-way
- 2.23.3.2 Easements
- 2.23.3.3 Areas where future maintenance access, security, or odor mitigation could become difficult.
- 2.23.3.4 Topography where the top or main floor of the station cannot practically be physically located above the 500-year flood elevation, and/or where the site cannot be made accessible during the 25-year flood event.
- 2.23.4 To the extent possible, lift station site layout should be oriented according to the prevailing wind direction so as to minimize potential for hydrogen sulfide odor problems with adjacent areas as well as minimize potential for gases to enter electrical panels or control building intake grills.

- 2.23.5 Access
- 2.23.5.1 Locate site security fence and entrance gate back from the street turnout for a 1-1/2 ton service truck so that the truck will be off the main roadway when the operator stops to unlock the access gate.
- 2.23.5.2 Where permanent on-site chemical storage tanks are used, provide sufficient tanker truck access. Provide roadway turnout of appropriate geometry such that chemical delivery truck does not sit on the main roadway when making delivery. Truck turnout inside radius should not be less than 50 feet.
- 2.23.5.3 Access roadway width should not be less than 16 feet and turnout radius should not be less than 30 feet inside (50 feet preferred) or such greater dimension as necessary to prevent truck or crane wheel overrun from the pavement.
- 2.23.5.4 Crane access and setting location to be used for lifting out submersible pumps or other equipment should be specifically addressed in the facility layout; for example site sizing should consider crane swing area, orientation hatches and lifting capacity.
- 2.23.5.5 Provide low maintenance type paving into the site and around the inside of the site meeting H-20 loading requirements.
- 2.23.5.5.1 Provide parking spaces only inside the secure site area.
- 2.23.5.5.2Low maintenance paving is defined as reinforced concrete, asphaltic concrete or pervious concrete pavement as required, of sufficient design and thickness for loads to be encountered. At a minimum, pavement thickness should be 7-inches. For projects in the ETJ areas outside of the City an all weather surface may be acceptable.
- 2.23.5.5.3Turf paver system should only be used when required by neighborhood for aesthetics.
- 2.23.5.5.4Provide reinforced concrete pavement and/or pervious concrete pavement as required, at uniform elevation, adjacent to and around the lift station. Width should be as necessary for proper mobility of the appropriate vehicle and not less than 12 feet.
- 2.23.5.5.5In order to minimize grounds maintenance and such items as grass and weeds cutting, it is preferred that the reinforced concrete and/or pervious concrete pavement extend totally within the secured paved area. Extend the concrete edge one foot beyond the fence line to provide a "mow" strip and minimize maintenance.
- 2.23.6 Security
- 2.23.6.1 The security system should meet all requirements of the Texas Commission on Environment Quality (TCEQ), as amended, but as a minimum the following COH requirements apply.

- 2.23.6.2 Site security should be provide by a full-perimeter 6-foot high fence topped with barbed wire. Site access will be through one 16-foot wide, double leaf, inward-opening swing gate secured with a chain and padlock. The fence should also include a pedestrian gate, easily accessed from the entrance drive with the same chain and padlock system described above.
- 2.23.6.3 Other intrusion security measures will be considered on a case-by-case basis if special conditions or requirements dictate.
- 2.23.6.4 The preferred fence is green PVC-coated, minimum No. 9 gauge galvanized woven wire, 6-foot high fabric, 2-inch open-diamond mesh pattern, cyclone-type fence topped with barbed wire. Such a security fence provides visibility into the protected station area so the presence of unauthorized persons can be detected before entry.
- 2.23.6.5 If determined necessary that fencing material should match those used in the neighborhood, hanging such matching material on the exterior of the chain link fence for decoration should be considered, as opposed to using a alternative fence system.
- 2.23.6.6 Where necessary to avoid subsidence of the fence system, consider the use of a concrete grade beam in which the steel line posts are set. Use minimum 24-inch deep beam with 6-foot long concrete support piles spaced not greater than 16 feet on center.
- 2.23.7 Landscaping
- 2.23.7.1 Provide landscaping to meet the requirements of the latest COH ordinance. As a minimum provide landscaping that meets the requirements described below.
- 2.23.7.2 Station design needs to be safe, simple and aesthetically blend into the surrounding landscape. Prefer the use of drought resistant native plants.
- 2.23.7.3 In order to promote a good neighborhood policy, minimize the amount of mud runoff, minimize interim maintenance and unsightliness, and promote vegetation growth in the construction zone, all disturbed areas and soil landscaping areas should be grass-sodded instead of hydro-mulched.
- 2.23.7.4 Landscape only outside of the security fence.
- 2.23.7.5 Consideration should be given to enlisting the assistance of the local neighborhood association in being responsible for the exterior landscaping maintenance around the station.
- 2.23.7.6 Include an automatic irrigation system in the design, if required.
- 2.24 Corrosion Control

- 2.24.1 Design should include consideration for corrosion protection for interior concrete surface of wet wells, structural steel and fasteners, HVAC systems, electrical, mechanical and other components that could be affected by the corrosive environment.
- 2.24.2 Concrete Protection
- 2.24.2.1 Provide corrosion protection over the entire concrete surface of the wet well from a plane one foot below the design low liquid level upward to and including the overhead ceiling/roof.
- 2.24.2.2 PVC sheet material applied to formwork and embedded in new cast-in-place concrete structure is the preferred method of protection. Liners should be one of the following:
 - Ameron T-Lock and Amer-Plate plain sheet
 - Poly-Tee PVC ribbed liners
- 2.24.2.3 Lift station rehabilitation projects should include lining the wet well as described in 2.24.2.1 with Lina-Bond liner system .
- 2.24.3 Pumps, Piping and Valve Protection
- 2.24.3.1 Ferrous surfaces of pumps, piping and valves should be coated as described in COH standard specification section 09901, Protective Coatings.
- 2.24.4 Miscellaneous Metals and Hardware
- 2.24.4.1 All anchor bolts and other fasteners into concrete should be Type 316 stainless steel.
- 2.24.4.2 Exterior doors should be fabricated with corrosion resistant material.
- 2.25 Odor Control
- 2.25.1 Odor control at lift stations is not mandatory but should be considered and addressed in the Preliminary Engineering Report. In general odor control for City of Houston lift stations will only be required if requested by the Project Manager. Odor control for non-City of Houston lift stations will be at the discretion of the Design Engineer. The following methods and criteria should be considered as a minimum guideline.
- 2.25.1.1 Chemical feed systems should be considered at lift stations that have discharge force mains longer than 2,000 feet.
- 2.25.1.2 The standard treatment for odor control is ferrous sulfate fed directly into the upstream manhole, pump station wet well or force main, in that order of preference.
- 2.25.1.3 Use of nitrate containing products for odor control may also be considered.

- 2.25.1.4 The use of activated carbon canister devices on the wet well vent pipe may be applicable.
- 2.25.1.5 Biofilter systems may be considered for lift station odor control.
- 2.25.2 Air Treatment Systems
- 2.25.2.1 Duct Work should be designed based on the following criteria.
- 2.25.2.1.1 Material of Construction
- 2.25.2.1.1.1 Below Grade Sch 40 or SDR 35 PVC, or DR 32.5 HDPE
- 2.25.2.1.1.2 Above Grade FRP coated for UV protection or 304 stainless Steel
- 2.25.2.1.2Air Velocity 1500 to 2500 ft/min
- 2.25.2.1.3Ventilation Rate the air changes per hour should be based on NFPA 820-Fire Protection in Wastewater Treatment Plant (current edition) issued by the National Fire Protection Association but should not be less than 15 to 25 changes per hour.
- 2.25.2.2 Exhaust Fan
- 2.25.2.2.1Fan should be corrosion resistant with slide mount motor to allow sheave replacement.
- 2.25.2.2.2 Fans located outside should be noise suppressed.
- 2.25.2.2.3 Flexible connectors should be used for inlet and outlet connections.
- 2.25.2.2.4 Provide fan volute with a drain to remove liquids
- 2.25.2.3 Air Treatment Unit
- 2.25.2.3.1Biofilter the criteria shown in table 9 is for guidance only. These criteria may be modified with appropriate engineering justification and/or manufacturer's recommendations. Note, the follow design criteria is applicable for hydrogen sulfide concentration of less than 50 ppm. Concentrations over 50 ppm require lower loading rates and special consideration.

Table 9 Biofilter Design Criteria			
Media Type	Inorganic		
Air Plenum Depth (inches)	12-18		
Media Depth (feet)	4-6		
Loading Rate (cfm/ft ²)	12-18		
Empty Bed Contact Time (EBCT) (seconds)	20-30		
Maximum Inlet Hydrogen Sulfide Concentration (ppm)	50		
Maximum Pressure Drop through the Media (inches w.c./ft media depth)	0.25-0.33		
Initial Phase pH Range	7-8.5		
Media Moisture Content (% by weight)	40-60		
Media Porosity (%)	40-50		
Water Usage (gallons/100,000 ft ³ of air)	10		
Maximum Air Temperature (°F)	105		
Anticipated Media Lift (years)	10-15		

- 2.25.2.3.2Activated Carbon Activated carbon naturally adsorbs volatile organics but must be specially treated to adsorb hydrogen sulfide.
- 2.25.2.3.2.1 Typical beds velocities are between 50 and 75 feet per second.
- 2.25.2.3.2.2 The COH will not regenerate activated carbon. The design must include provisions for carbon replacement.
- 2.25.2.3.2.3 Activated carbon units are generally considered applicable for small lift stations and remote locations.
- 2.25.3 Chemical Feed Systems Chemical feed system consists of chemical storage tanks, chemical metering pump, pump calibration equipment, and associated piping and controls.
- 2.25.3.1 Provide chemical resistant motor drive diaphragm metering pumps with spare parts, calibration cylinder and corrosion resistant pump stand. The metering pumps should have a feed rate of 3 GPH to 30 GPH and be capable of operating in manual or automatic modes.
- 2.25.3.2 Provide a panel mounted metering system with control panel, stop valve, relief valve, back pressure valve and pressure gage.
- 2.25.3.3 House the metering pumps in a lockable FRP building equipped with lights and a GFI outlet.
- 2.25.3.4 Provide an eye wash station for the chemical feed system.

2.25.3.5 Design Criteria for chemical feed systems is given in Table 10.

Table 10 Chemical Feed System				
Design Criteria				
Parameter	Ferrous Sulfate	Nitrate		
Method of Chemical Delivery	Bulk Liquid	Bulk Liquid		
Design Dosage	4.5 lbs FeSO ₄ /lb DS	10 lbs NO ₃ /lb DS		
Maximum Allow DS at Discharge (mg/L)	<1	0.3 to 0.5		
Storage Tank Capacity (days)	4-7	4-7		
Storage Tank Capacity (gallons)	3200-6500	3200-6500		
Storage Tank Material	HDPE	HDPE		
Secondary Containment	Required	Required		
Number of Chemical Metering Pumps	2	2		
Chemical Feed Point	Wet Well, above high water level, or first upstream manhole	Wet Well, above high water level, or first upstream manhole		

SECTION 3 STRUCTURAL DESIGN CRITERIA

SECTION 3

STRUCTURAL DESIGN CRITERIA

3.1 Specification Codes

- 3.1.1 The following codes, specifications, recommendations, allowable stresses, and loadings will be used as a minimum in designing the project structures, latest editions:
 - 1. Uniform Building Code UBC with City of Houston Amendments.
 - 2. Building Code Requirements for Reinforced Concrete (ACI 318).
 - 3. Details and Detailing of Concrete Reinforcement (ACI 315).
 - 4. Manual of Engineering and Placing Drawings for Reinforced Concrete Structures (ACI 315R).
 - 5. Environmental Engineering Concrete Structures (ACI 350R).
 - AISC Specification for Structural Steel Buildings Allowable Stress Design and Plastic Design, and Manual of Steel Construction, Allowable Stress Design.
 - 7. AASHTO Standard Specifications for Highway Bridges.
 - 8. Geotechnical Report.

3.2 Loads

- 3.2.1 Pump Station and Valve Vault Structures Below Grade
 - Hydrostatic liquid pressure due to maximum internal operating liquid level with no balancing external lateral pressure

63 pcf

2. Poorly draining sand or sand and gravel, lateral pressure

80pcf (min) or Per Soil Rpt.

3. Compacted silty clay, lateral pressure

100 pcf (min) or or Per Soil Rpt. Per Soil Rpt.

- 4. Lateral load due to surcharge loading of the construction crane and H-20 truck shall be added to load (b) and (c).
- 5. All Structures shall be designed to resist buoyancy to the finished top slab, see Section 3.3 for buoyancy calculation requirements.
- 6. Top Slab at or above Grade:

DL: Weight of Concrete Slab

SDL: Backfill or other Superimposed Dead Loads LL: 300 psf or equipment weight plus 50 psf.

7. Fiber Reinforced plastic cover, platform, and walkways at or below grade.

LL: 150 psf

3.2.2 Buildings and Miscellaneous Structures

Loadings for design of buildings to be obtained from appropriate codes. However, certain minimum loads shall be used as follows:

Minimum Uniform Live Loads:

Grating 150 psf Stairs and catwalks 150 psf Electrical control rooms 250 psf

(Estimate support area and equipment weights and assume

loads applied anywhere in area in question)

Wind: As per UBC for basic wind speed = 90 mph. Exposure C and Importance factor = 1.15

3.3 Buoyancy

The below grade wet wells and valve vaults will be subject to buoyant forces as defined in Section 3.2 Since a bentonite slurry may be used in the caisson excavation, the safety factor listed for soil friction reflects its presence. Verify that the required factors given by the geotechnical consultant are consistent with this. The structure weight shall only include the walls and slabs. The weight of fillets, baffle walls, pads, and equipment shall not be included as these could be changed in the future or may not be in place during construction.

3.4 Design Stresses

3.4.1 Concrete and Reinforcing Steel

1. Liquid Containing Structures:

Use Strength Design Method of ACI 318,

Building Code Requirements for Reinforced Concrete, with durability factor per ACI 350 R-89 Environmental Engineering Concrete Structures, and base crack control on a maximum Z of 115(The minimum concrete cover for steel reinforcement shall be 4 – inches where in contact with raw sewage.)

Concrete compressive strength at 28 days f'c=4,000 psi Reinforcing steel (A 615, Gr. 60) fy=60,000 psi

2. Building and Non-Liquid Containing Structures:

Use Strength Design Method of ACI 318

Concrete compressive strength at 28 days f'c = 4,000 psiReinforcing steel (A 615, Gr. 60) fy = 60,000 psi

3.4.2 Structural Steel

Follow AISC Specification for the Design, Fabrication and Erection of Structural Steel for Building, latest edition, and use following materials:

- 1. ASTM A36 unless otherwise specified
- 2. ASTM A325 H.S. bolts
- 3. ASTM A307 or A36 bar stock for anchor bolts

3.5 Design Considerations

3.5.1 Wet Well Load Cases:

- 1. Wet well empty with full lateral exterior load.
- 2. Wet well filled to the maximum level possible during a power outage, while disregarding exterior soil pressures.

3.5.2 Differential Soil Movement:

Due to the significant difference in foundation elevations between the wet well and the valve slab or vault, there is a potential for differential soil movement resulting from settlement, expansive clays, or movement needed to develop soil friction. This potential movement is most severe where wet wells are constructed by the caisson method. The open cut construction method allows for placing cement-stabilized sand so as to minimize the movement potential. The Guideline Drawings include expansion or rotation joints.

3.5.3 Wet Well Design:

- 1. Pre cast manhole risers and reinforced concrete pipes (RCP) are not acceptable for wet well design/construction; except for ASTM C76, Class IV Wall C, RCP, 6 foot diameter wet wells, less than 30 feet deep.
- 2. The circular wet well shall be designed using a recognized shell theory or by using the Portland Cement Association publication, "Circular Concrete Tanks without Prestressing."
- 3. The Guideline Drawing indicates dowels connecting the wall to the base slab for the caisson construction method. Structural connections between base slab and caisson shall be designed to transfer full base reactions from slab to wall. Full base reactions are:
 - a. For downward load: weight of components supported on the slab plus the weight of liquid at maximum elevation in the wet well:
 - b. For upward load: (1) soil bearing reactions; and (2) hydrostatic uplift pressures, together with any potential soil uplift pressure caused by instability, for empty well. Hydrostatic pressure shall be as defined in Paragraph 3.2.1 Soil Uplift Pressures shall be based on geotechnical analysis.

4. Wall Base Cutting Shoe Details

- a. The minimum depth of the cutting shoe base below the final excavation bottom shall be shown on the drawings. The required depth to maintain bottom stability shall be based on geotechnical analysis. In no case shall the required minimum depth of shoe penetration below the final excavation bottom be less than 1.5-feet.
- b. Under no circumstances shall the excavation depth shown on the drawings require excavation below the top of the inside bevel of the cutting shoe.

3.5.4 Additional Stresses Due to Caisson Construction:

- 1. Caisson and/or Open Cut types of construction should be designed and shown on the drawings, refer to 1.3.12, 3.5.1, 3.5.2, and 3.5.3.
- Tilting or out of plumbness may occur during sinking of caisson. Tilting shall be not more than 1-inch per 5-foot depth of caisson. Tilting causes bending stresses in the caisson wall. These additional stresses shall be included in the design of caisson wall.
- 3. Sudden sinking causes axial tension in caisson wall. When frictional and adhesion forces on upper length of caisson are equal to total weight of caisson, caisson sinking stops. This stoppage causes hang-up forces resulting in axial tension in caisson wall. Minimum hang-up force equal to one half the weight of caisson shall be used in design of longitudinal reinforcement in caisson wall.

3.5.5 Control Building Design

Unless the control building dimensions are changed from what is shown on the guide drawings, only the foundation needs to be designed. Follow the recommendations of the geotechnical report for the type and depth of the foundation.

3.5.6 Valve Vaults

- 1. Access shall be provided to underground valve vaults. Stairways shall have corrosion resistant, non slip steps and conform to OSHA regulations.
- Access over pipes, which extend to greater than 30-inches above the floor, shall be by catwalk as detailed on the guideline drawings. The fiberglass specifications call for the catwalk to be designed by the manufacturer. The drawings need to provide all the dimensions and approximate support leg locations.
- Use of vault- type or above ground valves and piping is permitted. Valves shall be mounted in a concrete vault, or on an-above ground concrete foundation. Isolation and check valves shall not be located in the wet well.

3.6 Detailing

- 3.6.1 Detailing of the reinforcement shall follow the requirements of ACI 315, ACI 315R, ACI 318, and ACI 350R.
- 3.6.2 All construction joints in water containing and below grade elements shall be provided with a 6-inch PVC water stop. All expansion joints shall be provided with a 9-inch PVC center bulb water stop. Where construction requirement or joint geometry will not allow a 6-inch PVC water stop, a surface applied water stop which forms a positive seal by adhesion or expanding in the presence of water may be used. Notes and/or details shall be added to insure that all joints and joint intersections are continuously sealed.

SECTION 4 MECHANICAL DESIGN CRITERIA

SECTION 4 MECHANICAL DESIGN CRITERIA

4.1 General

- 4.1. This design guide gives criteria and describes procedures for designing of cooling, ventilation and plumbing systems for lift stations. The lift stations include a wet well, and may include either a control building or an outdoor control panel. The valves and discharge piping may be above grade or in a vault below ground depending on specific site requirements.
- 4.1.2 The wet well is a strictly unattended well with submersible pumps. The submersible pumps can be removed from the wet well through the use of a rail guide removal system without the necessity of entering the pit. The Wet Well must not be entered under any circumstances without first providing proper ventilation to remove any explosive or toxic fumes that may be present in it.
- 4.1.3 The valve vault houses isolation and check valves, and could house other devices, which may require periodic checking. Therefore, it is preferred that the valve vault does not have a roof, but the use of solid panels or grating may be used. Before entering the valve vault, it must be properly ventilated.
- 4.1.4 The control building houses motor control centers, panels, transformers and other equipment required for the lift station operation.
- 4.1.5 Because of solar heat transmission into the control building and heat gains from electrical equipment, the building must be provided with proper cooling to prevent overheating and possible malfunction of electrical devices.
- 4.1.6 The design should comply with applicable criteria by TCEQ codes and NFPA 820, Standard for Fire Protection in Wastewater Treatment and Collection Facilities.

4.2 Wet Well Ventilation

- 4.2.1 Since the wet well is unattended and must not be entered without special provisions, a permanent type ventilation system is not required. Mechanical ventilation must be provided when the wet well is to be entered for any reason. A portable type engine or electrically driven air supply fan should be used. A quantity of outdoor air, equal to at lease thirty air changes per hour of the wet well volume must be blown into the well through a flexible pipe. The point of discharge of the air into the well must be where people are present. The air supply fan must be in operation for a minimum of two minutes before anyone enters the well. Entrance hatches must be kept open to allow foul air to escape from the well while outdoor air is being blown in.
- 4.2.2 The ventilation for a wet well should be designed as a passive gravity ventilation system (breather type), where the air volume in the well is either increased or decreased and outdoor air is pulled into the wet well and wet well air is pushed outdoors through the vent pipe, as sewage flows into or is pumped out of the wet well. The passive

ventilation pipe should be sized to allow an inflow of make-up air volume to the wet well, at a rate equal to the maximum liquid pumping rate out of the wet well, with an air velocity through the vent pipe not to exceed 600 fpm. In no case shall the vent pipe be less than six inches in size. Vents shall have stain steel insect screen that is easily replaceable, prevent rain water from entering, and be corrosion resistant.

4.3 Valve Vault Ventilation

- 4.3.1 The valve vault is normally unattended. However, on occasion it must be entered to service valves and other devices. Access shall be provided using stairways or ladders utilizing corrosion resistant non-slip steps or rungs conforming to OSHA requirements.
- 4.3.2 Since odors are not normally generated in the vault, continuous ventilation and odor control are not required. There is a possibility, however, that harmful or explosive fumes may enter the vault through cracks in walls or leaking valves. For this reason, the vault must be properly ventilated before anyone enters it. Use the same ventilation requirements as described for wet wells.

4.4 Plumbing

- 4.4.1 Water from open grating pump access hatches, cracks in walls and floor may leak into the valve vault. Liquids from leaky valves or from valves under repair may also be discharged onto the vault floor. A floor drain to drain the liquids to the adjacent wet well should be provided. The floor drain should have a "P" trap and a floating ball-type backwater valve to prevent fumes and liquids from entering the vault from the wet well. The valve vault floor should be sloped toward the floor drain.
- 4.4.2 A water supply is needed during repairs, for washing down equipment, valve vault and grade slabs. Water should be provided through a 3/4 inch diameter supply line and non-freeze type hose bib located near the wet well.
- 4.4.4 All water should be metered and supplied through a reduced pressure type backflow preventer for protection of the city water mains from possible contamination due to cross-connections.
- 4.4.5 The above grade water supply system pipe, fitting, valves, and water meter should be insulated and protected against freezing. The complete backflow preventer assembly should be provided with a vandal proof enclosure and equipped with access provisions for servicing and checking of the equipment.

4.5 Control Building Cooling

- 4.5.1 Control Buildings house motor control centers, electrical panel's, transformers, and other equipment for operating pumps located in Wet Wells.
- 4.5.2 The temperature in the buildings will be affected by solar heat gain, by thermal conduction and convection, and by heat radiated from electrical equipment. If the excess heat is not removed either with ventilation air or by mechanical cooling, the

- temperature in the building will rise to a point where electrical devices will malfunction and disrupt operation of the pumping station.
- 4.5.3 Where clean outdoor air at suitable temperatures is available, forced ventilation is the least expensive and simplest way of removing heat from a building. Removing heat by forced ventilation should be considered when it is possible to maintain indoor temperatures of not to exceed 105 degrees Fahrenheit at all times. In Houston, however, outdoor air may at times be very saline, and when drawn through a building will cause corrosion and adversely affect delicate electrical instruments and devices. Therefore, controlling building temperature in such atmospheres is best accomplished by providing mechanical cooling units, where minimum or no outdoor air is circulated through the building, thus avoiding possible corrosion of equipment.
- 4.5.4 The mechanical cooling units are also susceptible to corrosion from the saline atmosphere. The useful life of such units will be much shorter in a saline atmosphere than in normal atmospheric conditions. However, the operating life of mechanical units can be extended by specifying that the units will be provided with a protective coating application. Heat transfer capacity of protectively coated coils is not significantly affected (normally a reduction in capacity of less than 10 percent). The coating should cover all parts that come in contact with outdoor air, which includes the casing, heat transfer coils, refrigerant tubing and electrical devices. Mechanical cooling units should be wall mounted package type, heat type, units.
- 4.5.5 When sizing the cooling unit, all instantaneous sources of heat gain must be accounted for. The worst scenario would be with all pumps running and the outdoor temperature 100°F, or higher, and staying within this range for a number of consecutive days. Mechanical cooling units shall be sized to maintain a building indoor temperature of 85 degrees Fahrenheit or less at a 40 percent specific humidity at maximum heat gain.
- 4.5.6 Solar and transmitted heat gain calculations must be in accordance with the ASHRAE Handbook of Fundamentals. The outdoor temperature listed in the ASHRAE Guide must be adjusted for outdoor air temperature encountered in Houston, if such maximum temperature continues within that range for more than 4 hours. Maximum temperatures for the particular area must be obtained locally.
- 4.5.7 Unit Selection should be based on a terminal wall mounted heat pump type mechanical cooling unit having a minimum 13,000 BTUH sensible cooling capacity at 105°F outdoor air temperature at 77°F wet bulb temperature and an air temperature of 85°F dry bulb and 66°F wet bulb entering the cooling coil.
- 4.5.8 The above selected unit is sized for a 4-pump system. The same unit can also be used for stations with fewer pumps and smaller heat gains.
- 4.5.9 The air conditioning unit should be controlled through a room type thermostat set to maintain the room air temperature at approximately 80°F. The unit fan shall run continuously when the unit control switch is in the "on" position.

SECTION 5

ELECTRIC POWER AND INSTRUMENTATION CONTROLS DESIGN CRITERIA

SECTION 5 ELECTRICAL POWER AND INSTRUMENTATION CONTROLS DESIGN CRITERIA

5.1 Basic Data

- 5.1.1 Prior to assembling a drawing package, the following site specific data must be established and calculations performed. Refer to the current Design Guideline Manual for guidance on fencing requirements, site layout, location of electrical junction boxes, etc.
 - Number and size of pumps (gpm & HP/KW)
 - Station configuration (Preferred, Secured Site or Exposed Site)
 - Location of electrical junction box (above grade or in valve vault)
 - Refer to the latest Lift Station Design Guideline. This design document to be used for all lift stations designs within the City of Houston and ETJ area. For projects within the ETJ area, the local communication modem may be replaced by Auto dialer for remote alarm report.
 - Fencing requirements
 - Electrical power reliability study for alternate power determination
 - Full load calculation
 - Motor starting analysis and short circuit calculations
- 5.1.2 Approval of designs for non-PLC lift station electrical and instrumentation controls serving utility districts in the ETJ shall be allowed if one or more of the following conditions are met:
 - The District where the lift station is located has a minimum of 15 years remaining under an executed Strategic Partnership Agreement with the City of Houston,
 - The project includes a temporary lift station at a wastewater treatment plant,
 - The project includes a temporary lift station while the permanent lift station is under rehabilitation, or construction,
 - The plans show future expansion of the electrical controls which includes the addition of a PLC.
 - The Owner has executed an agreement with the City of Houston stating the area being served by the lift station location will not be annexed.
 - The Owner has executed an agreement with the City of Houston with a term not to exceed 15 years, stating that the lift station electrical controls will be upgraded before annexation to the future current design criteria and the Owners shall, subject to the availability of funds from a legally available source, pay for those upgrades without extending the term of the outstanding the indebtedness of the Owner.

If a PLC is not required, the lift station control panel may consist of relay or solid state controls, NEMA compliant switchgear, main circuit breaker, motor starters, over current protection, surge protection, autodialer (or other telemetry,) level control backup system, phase failure monitor, alarms, and other devices deemed necessary by the design engineer. The control panel shall be sized to adequately house the controls and

must be of stainless steel.

- 5.2 Electrical Drawing Set
- 5.2.1 Each design package shall contain the following minimum electrical drawings:
 - Electrical Symbols Legend, Lighting Fixture Schedule & Abbreviations
 - Site plan, including grounding and outdoor lighting
 - Conduit Layout Plan
 - Conduit Layout Sections
 - Electrical Design Details
 - Control Building Plan (for sites with control buildings)
 - Control Cabinet Layout
 - Process and Instrumentation Diagram
 - Control System Wiring Diagrams
 - MCC & PLC Power Schematic Wiring
 - Single Line Diagram
 - Cable and Conduit Schedule
 - Device Rating Schedule
 - MCC Elevation (for sites with a MCC)
- 5.2.2 The electrical drawing set is arranged with Guideline plans and details for control system and instrumentation with up to 6 pumps (4 wet weather and 2 dry weather pumps). The contracted design engineer is responsible for adjusting the details in the drawings, the number of pump starters, relays, devices, et cetera, based on the specific configuration. Delete only the devices associated with pumps not provided. DO NOT delete items associated with provided pumps without prior approval of the City of Houston. Some components have been included to provide for ease of future expansion. If there is no dry weather wet weather configuration, design engineer shall consider wet weather configuration as a normal pump configuration up to 4-pump and delete dry weather drawing details. If additional pump is needed, the same format shall be used to add pump to the 4-pump configuration.
- 5.3 Electrical Symbols, Legend, Lighting Fixture Schedule & Abbreviations Sheet
- 5.3.1 This sheet defines the symbols and abbreviations utilized in the preparation of the contract drawing package, and schedules the lighting fixtures used. Use this sheet as a guideline for revisions made to the Guideline Drawings
- 5.3.2 Include this sheet in each design package. <u>DO NOT</u> delete symbols or abbreviations from this sheet. Add any special items used in the preparation of the final package. Delete any lighting fixtures not used.
- 5.4 Site Plan
- 5.4.1 In addition to the Design Guideline Drawings required, a site specific electrical site plan must be created. After establishment of the basic civil site, the following electrical information must be established and/or added:

- Locate the electrical building or electrical panel in accordance with the COH Design Guidelines.
- Locate the electrical service point.
- Orientate the lift station to coincide with the civil plans.
- Route conduits from electrical service and telephone service locations to the control building/cabinet.
- Locate yard light and route conduit from control building/cabinet.
- Establish site ground field and provide ground connections of service entrance, control building/cabinet, handrails, above grade electrical junction boxes, yard light, piping and all metal parts.
- 5.4.2 Note: An example of an electrical site plans is included in the Design Guideline
 Drawing package as referenced material for the Design Engineering.

 <u>DO NOT</u> include this drawing in the project drawing package without site specific modifications.
- 5.5 Electrical Plans and Sections
- 5.5.1 From the Standard Design Guideline Drawings, select the following drawings for the appropriate lift station configuration and size. Review all drawings and details and revise to accommodate specific site and facility requirements. At a minimum, the following review and revisions are required:
 - Verify structural dimensions of the valve vault and the wet well and revise the electrical plans accordingly
 - Verify the number of active air cell conduits based on the applicable instrument system. <u>Provide adequate air cell and electrical installed spare conduit for</u> anticipated future use.
 - Verify drawing number cross references for section callouts
 - Verify all sections referenced are included in the document set
 - Orient station plans and conduit layout sheets to correspond with the site plan
 - Adjust north arrow on each plan sheet
 - Add any special or extra features required at this specific site. <u>DO NOT use</u> conduits designated as "future space" for undesignated additions.
 - Determine the need for power factor correction capacitors and locate on the drawings. Connect capacitors to the motor starter leads prior to the motor overload relay. Exercise caution to specify capacitors with over-current fuses and indicating lights then locate capacitors within the 25 wire feet distance specified by the N.E.C. Article 240-21.

5.6 Typical Details

5.6.1 The typical electrical details are to be revised and combined as necessary to meet specific site conditions. The listed drawings are based on the latest design guideline updates (September 15, 2009) that includes quick connection (manual transfer switch for portable generator connection) per TCEQ chapter 217. In general, the details apply to the following drawings:

11e01 12e01 13e01 13e02 13e03 13e04	X0e57 Z X0e58 Z X0e59 Z Y0e21 Z	0e01 0e02 0e03 0e04 0e05
13e01 13e02 13e03 13e04	X0e58 Z X0e59 Z Y0e21 Z	0e03 0e04
13e02 13e03 13e04	X0e59 Z Y0e21 Z	0e04
13e03 13e04	Y0e21 Z	
13e04		0e05
10-05	Y0e22 Z	0e06
13e05	Y0e23 Z	0e10
(0e01	Y0e25 Z	0e11
(0e02	Y0e26 Z	0e12
(0e03	Y0e30 Z	0e13
(0e04	Y0e40 Z	0e14
(0e05	Y0e41 Z	0e15
(0e06	Y0e50 Z	0e20
(0e10	Y0e51 Z	0e21
(0e40	Y0e52 Z	0e40
(0e41	Y0e53 Z	0e41
(0e42	Y0e58 Z	0e42
(0e50	Y0e59 Z	0e43
(0e51	Y0e60 Z	0e44
(0e52	Y0e61 Z	0e45
(0e53	Y0e62 Z	0e46
(0e54	Y0e63	
	Z0c01	
(0e01 (0e02 (0e03 (0e04 (0e05 (0e06 (0e40 (0e41 (0e42 (0e50 (0e51 (0e52 (0e53	Y0e23 Z Y0e25 Z Y0e26 Z Y0e30 Z Y0e40 Z Y0e41 Z Y0e50 Z Y0e51 Z Y0e52 Z Y0e53 Z Y0e58 Z Y0e59 Z Y0e60 Z Y0e61 Z Y0e62 Z Y0e63	0e1 0e1 0e1 0e1 0e2 0e2 0e4 0e4 0e4 0e4

5.7 Control Building Plan

Include this sheet in each lift station package with a control building. Revise building dimensions, number of MCC sections, telephone service and conduit plan based on the number and size of pumps. (Control Building dimensions are provided on the Device Rating Schedules). Orient the building plans and add a north arrow to coordinate with the site plan. Revise lightning protection details to coordinate with actual building construction and materials. Relocate alarm light to provide visibility from access road.

5.8 Control Cabinet Layout

Based on the size of the station and the intended location of the control cabinet (indoor or outdoor), select the appropriate control cabinet installation and equipment layout sheet(s). Revise the dimensions, elevation, device layout and air piping schematics based on the actual number of pumps. The outdoor power and control cabinets are shown back-to-back in a single four door enclosure. For installations where this approach is not feasible, the designer must separate the two sections (shown as the front control panel and the back power panel), adjust enclosure depth, and provide interconnecting wiring required for the number of pumps used.

5.9 Process and Instrumentation Diagrams

Based on the number of pumps and system configuration (dry weather/wet weather), select the appropriate process and instrumentation diagrams. Revise by deleting unnecessary devices/equipment based on number of pumps. Do not renumber or adjust input/output designations. Label all unused PLC input/outputs as spare.

5.10 Control System Wiring Diagrams

Based on the number of pumps and system configuration (dry weather/wet weather) select the appropriate control system schematic diagrams. Revise by deleting unnecessary devices based on number of pumps. Do not renumber or adjust line numbers or input/output designations. Label all unused PLC input/output as spare.

5.11 MCC & Power Wiring Diagram

Select the appropriate diagram and revise to reflect actual number of pumps, valve vault exhaust fan, service voltage and other site specific conditions

5.12 Single Line Diagrams

Based on the location of the motor controls and the instrumentation level, select the appropriate diagram. Revise the selected single line diagram to reflect actual number of pumps, service voltage, use of a valve vault, use of a lighting transformer, etc. Coordinate service entrance and metering requirements with utility service provider

5.13 Conduit Schedule

Prepare a site specific conduit schedule by revising the following columns from the appropriate guideline sheet:

- Conduit Number
- Description
- Service (Voltage and Amps / HP)
- Routing (From, To, Via)
- Conduit Description and Size
- Cable or Wire Description and Conductor Size

Revise the table to provide conduit and wire sizes and descriptions in accordance with NEC requirements for actual site conditions. Conduits not necessary at a specific site should be deleted from the schedule. Show conduits to be installed for future use as "Installed Spare" or "Future Space" on the Schedule.

Notes to the Design Engineer are provided to assist the designer in selecting conduits for certain special installations. Revise the conduit schedule selected based on the appropriate notes. Delete the notes from the final document.

5.14 Device Ratings Schedule

Prepare a site specific device ratings schedule by including the following columns from the appropriate sheets:

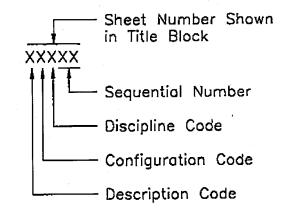
- Item
- Circuit
- Description
- Rating (Select the column that corresponds to the number and size of pumps at the site.)

All pump sizes are specified in standard motor horsepower. For submersible pumps that do not precisely coordinate with these standard horsepower, select the table for the next larger size.

Verify that device ratings selected are in accordance with current NEC requirements.

5.15 MCC Elevation

For sites that include a MCC, include the MCC elevation specified on the device rating schedule for the appropriate number of pumps, and horsepower ratings required.


APPENDIX A GENERAL DRAWING/FILE INFORMATION

City of Houston Design Guideline Drawings For Submersible Lift Stations Filename & Sheet Numbering Designation Codes

Description Codes

A - 2-Pump Station 100 gpm per Pump B - 2-Pump Station 100-300 gpm per Pump C - 2-Pump Station 250-500 gpm per Pump - 3-Pump Station 250-2000 gpm per Pump E - 3-Pump Station 2000-5300 gpm per Pump F - 4-Pump Station 500-2500 gpm per Pump - 5-Pump Station 2 Dry & 3 Wet Weather Pumps H - 6-Pump Station 2 Dry & 4 Wet Weather Pumps Open J - Open - Open Open - Open - Open - Open - Open - Open Open. Open - Open Open Open W - Level | Instrumentation - Level II Instrumentation Y - Level III Instrumentation Z - Common Drawings

Filename Designation

Discipline Codes

- A Architectural
- C Civil
- E Electrical & Instrumentation
- G General
- S Structural

Configuration Codes

- 0 Dwg Non-Specific to Configuration
- 1 Alternate High Profile Configuration
- 2 Preferred Configuration
- 3 Alternate Low Profile Configuration

DRAWING INDEX
COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS

	COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS
New	Drawing Title
Sht No.	
Z0G01	Title Page
Z0A01	Control Building, Architectural
A1C01	Plan View @ Grade & Sections, 2-Pumps @ 100 gpm per Pump, Alternate High Profile Configuration
A1C02	Elevation Sections, 2-Pumps @ 100 gpm per Pump, Alternate High Profile Configuration
A2C01	Plan View @ Grade & Sections, 2-Pumps @ 100 gpm per Pump, Preferred Configuration
A2C02	Elevation Sections, 2—Pumps @ 100 gpm per Pump, Preferred Configuration
A3C01	Plan View @ Grade & Sections, 2-Pumps @ 100 gpm per Pump, Alternate Low Profile Configuration
A3C02	Elevation Sections, 2-Pumps @ 100 gpm per Pump, Alternate Low Profile Configuration
B1C01	Plan View @ Grade & Sections, 2-Pumps @ 100 - 300 gpm per Pump, Alternate High Profile Configuration
B1C02	Elevation Section, 2-Pumps @ 100 - 300 gpm per Pump, Alternate High Profile Configuration
	Plan View @ Grade & Sections, 2—Pumps @ 100 — 300 gpm per Pump, Preferred Configuration
B2C02	Elevation Section, 2—Pumps @ 100 — 300 gpm per Pump, Preferred Configuration
B3C01	Plan View @ Grade & Sections, 2-Pumps @ 100 - 300 gpm per Pump, Alternate Low Profile Configuration
B3C02	Elevation Section, 2-Pumps @ 100 - 300 gpm per Pump, Alternate Low Profile Configuration
C1C01	Plan View @ Grade & Base Sect, 2-Pumps @ 250 - 500 gpm per Pump, Alternate High Profile Configuration
C1C02	Elevation Section, 2-Pumps @ 250 - 500 gpm per Pump, Alternate High Profile Configuration
C2C01	Plan View @ Grade & Base Sect, 2-Pumps @ 250 - 500 gpm per Pump, Preferred Configuration
C2C02	Elevation Section, 2—Pumps @ 250 — 500 gpm per Pump, Preferred Configuration
C3C01	Plan View @ Grade & Base Sect, 2-Pumps @ 250 - 500 gpm per Pump, Alternate Low Profile Configuration
C3C02	Elevation Section, 2-Pumps @ 250 - 500 gpm per Pump, Alternate Low Profile Configuration
<u> </u>	
D1C01	Plan View @ Grade & Base Sect, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate High Profile Configuration
D1C02	Elevation Section, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate High Profile Configuration
D2C01	Plan View @ Grade, 3Pumps @ 250 - 2000 gpm per Pump, Preferred Configuration

	COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS
New	Drawing Title
Sht No.	
D2C02	Elevation Section, 3-Pumps @ 250 - 2000 gpm per Pump, Preferred Configuration
D2C03	Base Section, 3-Pumps @ 250 - 2000 gpm per Pump, Preferred Configuration
BLOO	
D3C01	Plan View @ Grade, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate Low Profile Configuration
D3C02	Elevation Section, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate Low Profile Configuration
D3C03	Base Section, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate Low Profile Site Configuration
·	
F1C01	Plan View @ Grade, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate High Profile Configuration
F1002	Flevation Section, 3—Pumps @ 2000 — 5300 gpm per Pump, Alternate High Profile Configuration
E1003	Base Section, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate High Profile Configuration
F2C01	Plan View @ Grade, 3-Pumps @ 2000 - 5300 gpm per Pump, Preferred Configuration
F2C02	Elevation Section, 3-Pumps @ 2000 - 5300 gpm per Pump, Preferred Configuration
F2C03	Sections, 3-Pumps @ 2000 - 5300 gpm per Pump, Preferred Configuration
E3C01	Plan View @ Grade, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate Low Profile Configuration
F3C02	Elevation Section, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate Low Profile Configuration
E3C03	Base Section, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate Low Profile Configuration
F1C01	Plan View @ Grade, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate High Profile Configuration
F1C02	Elevation Section, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate High Profile Configuration
F1C03	Base Section, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate High Profile Configuration
F2C01	Plan View @ Grade, 4-Pumps @ 500 - 2500 gpm per Pump, Preferred Configuration
F2C02	Elevation Section, 4-Pumps @ 500 - 2500 gpm per Pump, Preferred Configuration
F2C03	Base Section, 4-Pumps @ 500 - 2500 gpm per Pump, Preferred Configuration
F3C01	Plan View @ Grade, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate Low Profile Configuration
F3C02	Flevation Section, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate Low Profile Configuration
F3C03_	Base Section, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate Low Profile Configuration
G1C01	Plan View @ Grade, 3 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration
G1C02	Elevation Section, 3 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration
G1C03	Base Section, 3 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration

COH	DESIGN	GUIDELINES	FOR	SUBME	<u>RSIBLE</u>	<u>STATIONS</u>
			D		-	

	COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS
New	Drawing Title
Sht No.	
G2C01	Plan View @ Grade, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration
G2C02	Elevation Section, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration
G2C03	Base Section, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration
G2C04	Station Operation Tables, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration
G3C01	Plan View @ Grade, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
G3C02	Elevation Section, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
G3C03	Base Section, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
G3C04	Station Operation Tables, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
H1C01	Plan View @ Grade, 4 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration
H1C02	Elevation Section, 4 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration
H1C03	Base Section, 4 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration
H2C01	Plan View @ Grade, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration
H2C02	Elevation Section, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration
H2C03	Base Section, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration
H2C04	Station Operation Tables, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration
H3C01	Plan View @ Grade, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
H3C02	Elevation Section, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
H3C03	Base Section, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
H3C04	Station Operation Tables, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
	Air Cell Assembly & Details
	Typical Details, Civil
Z0C03	Typical Details, Civil
	Discharge Piping Support Details
	Catwalk Details
	Surge Relief Valve Details
	Typical Details, Civil
	Typical Site Details
Z0C09	Example - Site Plan
A1S01	Structural, 2-Pumps @ 100 gpm per Pump, Atternate High Profile Configuration

COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS Drawing Title New Sht No. A2S01 Structural, 2-Pumps @ 100 gpm per Pump, Preferred Configuration A3S01 Structural, 2-Pumps @ 100 gpm per Pump, Alternate Low Profile Configuration B1S01 Structural, 2-Pumps @ 100 -300 gpm per Pump, Alternate High Profile Configuration B2S01 | Structural, 2-Pumps @ 100 - 300 gpm per Pump, Preferred Configuration B3S01 Structural, 2-Pumps @ 100 - 300 gpm per Pump, Alternate Low Profile Configuration C1S01 Structural, 2-Pumps @ 250 - 500 gpm per Pump, Alternate High Profile Configuration C1S02 Structural, 2-Pumps @ 250 - 500 gpm per Pump, Alternate High Profile Configuration C2S01 | Structural, 2-Pumps @ 250 - 500 gpm per Pump, Preferred Configuration C2S02 Structural, 2-Pumps @ 250 - 500 gpm per Pump, Preferred Configuration C2S03 | Structural, 2-Pumps @ 250 - 500 gpm per Pump, Preferred Configuration C3S01 Structural, 2-Pumps @ 250 - 500 gpm per Pump, Alternate Low Profile Configuration C3S02 Structural, 2-Pumps @ 250 - 500 gpm per Pump, Alternate Low Profile Configuration C3S03 Structural, 2-Pumps @ 250 - 500 gpm per Pump, Alternate Low Profile Configuration D1S01 Structural, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate High Profile Configuration D1S02 | Structural, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate High Profile Configuration D2S01 | Structural, 3-Pumps @ 250 - 2000 gpm per Pump, Preferred Configuration D2S02 Structural, 3-Pumps @ 250 - 2000 gpm per Pump, Preferred Configuration D2S03 | Structural, 3-Pumps @ 250 - 2000 gpm per Pump, Preferred Configuration D2S04 Structural, 3-Pumps @ 250 - 2000 gpm per Pump, Preferred Configuration D3S01 Structural, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate Low Profile Configuration D3S02 Structural, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate Low Profile Configuration D3S03 Structural, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate Low Profile Configuration D3S04 Structural, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate Low Profile Configuration E1S01 | Structural, 3—Pumps @ 2000 — 5300 gpm per Pump, Alternate High Profile Configuration E1S02 | Structural, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate High Profile Configuration E1S03 Structural, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate High Profile Configuration

0011 5501011	OURSEL MISO SO	S ALIDERCON E	OTATIONO
COH DESIGN	GUIDELINES FU	DR SUBMERSIBLE	SIAHUNS

New	COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS Drawing Title
Sht No.	Diaming line
	Structural, 3-Pumps @ 2000 - 5300 gpm per Pump, Preferred Configuration
E2001	Structural, 3—Pumps @ 2000 — 5300 gpm per Pump, Preferred Configuration
E2002	Structural, 3—Pumps @ 2000 — 5300 gpm per Pump, Preferred Configuration
E2303	Structural, 3—Pumps @ 2000 — 5300 gpm per Pump, Preferred Configuration
E2304	Structurar, 3—Fumps @ 2000 = 5500 gpm per Fump, Freienes Consiguration
ERRA	Structural, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate Low Profile Configuration
E3901	Structural, 3—Pumps @ 2000 — 5300 gpm per Pump, Alternate Low Profile Configuration
E3002	Structural, 3—Pumps @ 2000 — 5300 gpm per Pump, Alternate Low Profile Configuration
E0000	Structural, 3—Pumps @ 2000 — 5300 gpm per Pump, Alternate Low Profile Configuration
E3304	Structural, 3-rumps @ 2000 - 5000 gpm per rump, Alternate 2041 10/10 Comiguration
E1901	Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate High Profile Configuration
E1902	Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate High Profile Configuration
	Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate High Profile Configuration
1 1000	Ottactalat, 4-4 amps @ ood 2000 gpitt por t ampj rites train a competition of the
F2S01	Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Preferred Configuration
F2S02	Structural, 4—Pumps @ 500 — 2500 gpm per Pump, Preferred Configuration
F2S03	Structural, 4—Pumps @ 500 — 2500 gpm per Pump, Preferred Configuration
F2S04	Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Preferred Configuration
F3S01	Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate Low Profile Configuration
F3S02	Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate Low Profile Configuration
F3S03	Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate Low Profile Configuration
F3S04	Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate Low Profile Configuration
, , , ,	
G1S01	Structural, 3 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration
	Structural, 3 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration
G1S03	Structural, 3 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration
G2S01	Structural, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration
	Structural, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration
	Structural, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration
G2S04	Structural, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration
G3S01	Structural, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
G3S02	Structural, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration

	COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS
New	Drawing Title
Sht No.	
G3S03	Structural, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
G3S04	Structural, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
H1S01	Structural, 4 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration
H1S02	Structural, 4 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration
H1S03	Structural, 4 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration
H2S01	Structural, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration
H2S02	Structural, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration
H2S03	Structural, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration
H2S04	Structural, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration
H3S01	Structural, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
H3S02	Structural, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
H3S03	Structural, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
H3S04	Structural, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
	Structural - Typical Details
Z0S02	Structural – General Notes
	Description of the second seco
A1E01	Conduit Layout, 2-Pumps @ 100 gpm per Pump, Alternate High Profile Configuration
	Conduit Layout, 2—Pumps @ 100 gpm per Pump, Preferred Configuration
A3E01	Conduit Layout, 2-Pumps @ 100 gpm per Pump, Alternate Low Profile Configuration
D. = 0.	Constitution O. Duman O. 100 200 com par Buma Albamata High Berlin Configuration
B1E01	Conduit Layout, 2—Pumps @ 100 — 300 gpm per Pump, Alternate High Profile Configuration
B2E01	Conduit Layout, 2—Pumps @ 100 — 300 gpm per Pump, Preferred Configuration
B3E01	Conduit Layout, 2-Pumps @ 100 - 300 gpm per Pump, Alternate Low Profile Configuration
04504	One dails Levels C. Dumas @ 050 500 com par Ruma Attampte High Profile Configuration
C1E01	Conduit Layout, 2-Pumps @ 250 - 500 gpm per Pump, Alternate High Profile Configuration
C2E01	Conduit Layout, 2—Pumps @ 250 — 500 gpm per Pump, Preferred Configuration
CZEUI	Conduit Edyodi, 2—t drips @ 200 — 500 gprit por t dripp, t toloriod de migeracies.
C3E01	Conduit Layout w/JB Outside Valve Vault, 2-Pumps @ 250 - 500 gpm per Pump, Alternate Low Profile Configuration
CaEos	Conduit Layout w/JB Inside Valve Vault, 2-Pumps @ 250 - 500 gpm per Pump, Alternate Low Profile Configuration
	Control Palant Man March 1 and 1 and 2 and 2 and 2 and 1 and 1 and 1

DRAWING INDEX ON GUIDELINES FOR SUBMERSIBLE STATIONS

COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS			
New	Drawing Title		
Sht No.	<u>-</u>		
C3E03	Conduit Layout Sections, 2-Pumps @ 250 - 500 gpm per Pump, Alternate Low Profile Site Configuration		
D1E01	Conduit Layout, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate High Profile Configuration		
D . L			
D2E01	Conduit Layout, 3-Pumps @ 250 - 2000 gpm per Pump, Preferred Configuration		
DILU.	Outlook adjourned to the second of the secon		
DSE01	Conduit Layout w/JB Outside Valve Vauit, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate Low Profile Configuration		
Daeus	Conduit Layout w/JB Inside Valve Vault, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate Low Profile Configuration		
D3E03			
DOEUG	Conduit Layout decitoris, 6-F drips @ 250 - 2000 gpm per f drips, Atternate 254 f forile destrigation		
E1E01	Conduit Layout, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate High Profile Configuration		
E 1501	Collabit Layout, 6-Fairips @ 2000 - 3000 gp/ii per i omp, Alternate Fright Tome Collinguistics		
E2E01	Conduit Layout, 3-Pumps @ 2000 - 5300 gpm per Pump, Preferred Configuration		
LZLU	Conduit Layout, 0-1 dilips @ 2000 - 5000 gpin por 1 dilip, 1 foldred Coringalization		
E3E01	Conduit Layout w/JB Outside Valve Vault, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate Low Profile Configuration		
E3E02	Conduit Layout w/JB Inside Valve Vault, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate Low Profile Configuration		
E3E03	Conduit Layout Sections, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate Low Profile Configuration		
EOEOO	Collabit Layout Sections, 6-F Binps @ 2000 - 5000 gpin per Famp, Alternate 2011 Folio Collinguitation		
E1501	Conduit Layout, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate High Profile Configuration		
FIEDI	College Eayout, 4-1 diffps @ coc - 2000 gpm por 1 diffp, rateriate riigit folio Colligoration		
ESEN	Conduit Layout, 4-Pumps @ 500 - 2500 gpm per Pump, Preferred Configuration		
PZCU1	Conduit Layout, 4-rumps @ 300 2300 gpm per rump, r reiched Cortingalization		
ESECT	Conduit Layout w/JB Outside Valve Vault, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate Low Profile Configuration		
FOEOU	Conduit Layout w/JB Inside Valve Vault, 4—Pumps @ 500 — 2500 gpm per Pump, Alternate Low Profile Configuration		
F3E02			
F3E03	Conduit Layout Sections, 4-Fullips @ 500 - 2500 gpm per Fullip, Alternate Low Fronte Configuration		
04504	Conduit Layout, 3 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration		
G1E01	Conduit Layout, 3 wet & 2 biy weather rumps, Alternate high Frome Configuration		
COFO4	Conduit Layout, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration		
GZEU1	Conduit Layout, 3 year of 2 big yyearner Fullips, Freteried Confliguration		
COFOA	Conduit Layout w/JB Outside Valve Vault, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration		
GOEO1	Conduit Layout w/JB Outside Valve Vault, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration		
G3E02	Conduit Layout Wood Institute Valve Valve, 3 ever & 2 bity eventies Fullips, Attended Low Profile Configuration		
G3E03	Conduit Layout Elevations, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration		
G3E04	Conduit Layout Sections, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration		
G3E05	Conduit Layout Sections, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration		

	COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS
New	Drawing Title
Sht No.	
H1E01	Conduit Layout, 4 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration
H2F01	Conduit Layout, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration
H3E01	Conduit Layout w/JB Outside Valve Vault, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
H3F02	Conduit Layout w/JB Inside Valve Vault, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
H3E03	Conduit Layout Elevations, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
H3E04	Conduit Layout Sections, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
H3E05	Conduit Layout Sections, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
W0E01	Level I Instrumentation, Outdoor Control Cabinet Installation & Air Piping Schematic
W0E02	Level I Instrumentation, Outdoor Control Panel Equipment Layout & Schedule
W0E10	Level I Instrumentation, Single Phase, Control Cabinet Equipment Layout
W0E11	Level I Instrumentation, Single Phase, Control Cabinet Equipment Layout
W0E12	Level I Instrumentation, Single Phase, Single Line, & Power Wiring Diagrams
W0E13	Level I Instrumentation, Single Phase, Control Wiring Diagram
W0E14	Level I Instrumentation, Single Phase, Control Wiring Diagram
W0E15	Level I Instrumentation, Single Phase, Alternate Control Wiring Diagram
W0E20	Level I Instrumentation, Three Phase, Control Cabinet Equipment Layout
W0E21	Level I Instrumentation, Three Phase, Control Cabinet Equipment Layout
W0E22	Level I Instrumentation, Three Phase, Single Line, & Power Wiring Diagrams
W0E23	Level I Instrumentation, Three Phase, Control Wiring Diagram
W0E24	Level I Instrumentation, Three Phase, Control Wiring Diagram
W0E25	Level I Instrumentation, Three Phase, Alternate Control Wiring Diagram
W0E30	Level I Instrumentation, Control System Process & Instrumentation Diagram
X0E01	Level II Instrumentation, Outdoor Control Cabinet Installation & Air Piping Schematic
X0E02	Level II Instrumentation, Outdoor Control Cabinet Equipment Layout & Schedule
X0E03	Level II Instrumentation, Outdoor Control Cabinet Equipment Layout
X0E04	Level II Instrumentation, Outdoor Control Cabinet Equipment Layout
X0E05	Level II Instrumentation, Outdoor Control Cabinet Equipment Layout

DRAWING INDEX COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS

COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS		
New	Drawing Title	
Sht No.		
X0E06	Level II Instrumentation, Outdoor Panel, Power Wiring Diagram	
X0E10	Level II Instrumentation, Outdoor Power Panel, Single Line Diagram	
X0E21	Level II Instrumentation, Indoor Control Cabinet Layout & Air Piping Schematic	
X0E22	Level II Instrumentation, Indoor Control Cabinet Equipment Layout	
	Level II Instrumentation, Indoor Control Cabinet Equipment Layout	
X0E24	Not Used	
X0E25	Level II Instrumentation, Indoor Panel, MCC Power Schematic & Wiring Diagram	
X0E28	Level II Instrumentation, Indoor Panel, Single Line Diagram	
X0E40	Level II Instrumentation, Outdoor Panel, Control System Process & Instrumentation Diagram	
X0E41	Level II Instrumentation, Outdoor Panel, Control System Process & Instrumentation Diagram	
	The state of the s	
X0E50	Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram	
X0E51	Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram	
X0E52	Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram	
X0E53	Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram	
X0E54	Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram	
X0E55	Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram	
X0E56	Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram	
X0E57	Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram	
X0E58	Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram	
	Discourse Control of the Control of	
X0E60	Level II Instrumentation, Indoor Panel, Control System Process & Instrumentation Diagram	
X0E61	Level II Instrumentation, Indoor Panel, Control System Process & Instrumentation Diagram	
	La Lill Communication Indian Control Depart Control Witting Disputer	
X0E70	Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram	
X0E71	Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram	
X0E72	Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram	
X0E73	Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram	
X0E74	Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram	
X0E75	Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram	
X0E76	Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram	

DRAWING INDEX COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS

	COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS
New	Drawing Title
Sht No.	
X0E77	Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram
X0E78	Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram
Y0E20	Level III Instrumentation, Air Piping Schematic
Y0E21	Level III Instrumentation, Control Cabinet Layout & Equipment Schedule
Y0E22	Level III Instrumentation, Control Cabinet Equipment Layout
Y0E23	Level III Instrumentation, Control Cabinet Equipment Layout
Y0E24	Not Used
Y0E25	Not Used
Y0E26	Level III Instrumentation, MCC Power Schematic, Control Power & Communications Wiring Diagram
Y0E30	Level III Instrumentation, Single Line Diagram
Y0E40	Level III Instrumentation, Control System Process & Instrumentation Diagram
Y0E41	Level III Instrumentation, Control System Process & Instrumentation Diagram
-	
Y0E50	Level III Instrumentation, Control Wiring Diagram
Y0E51	Level III Instrumentation, Control Wiring Diagram
	Level III Instrumentation, Control Wiring Diagram
Y0E53	Level III instrumentation, Control Wiring Diagram
Y0E54	Level III Instrumentation, Control Wiring Diagram
Y0E55	Level III Instrumentation, Control Wiring Diagram
Y0E56	Level III Instrumentation, Control Wiring Diagram
Y0E57	Level III Instrumentation, Control Wiring Diagram
Y0E58	Level III Instrumentation, Control Wiring Diagram
	Level III Instrumentation, Control Wiring Diagram
	Level III Instrumentation, Control Wiring Diagram
Z0E01	Electrical Symbols, Legend, Lighting Fixture Symbols & Abbreviations
Z0E02	Typical Junction Box Details
	Typical Details, Instrumentation/Electrical
	Typical Details, Instrumentation/Electrical
	Control Building, Instrumentation/Electrical
Z0E06	

	• • •
COH DESIGN GUIDELINE	S FOR SUBMERSIBLE STATIONS

	Drawing Title
New	Diaming ride
Sht No.	
Z0E 10	
Z0E11	Level II or III Instrumentation, MCC Elevations
Z0E12	Level II or III Instrumentation, MCC Elevations
Z0E13	Level II or III Instrumentation, MCC Elevations
Z0E14	Level II or III Instrumentation, MCC Elevations
Z0E15	Level II or III Instrumentation, MCC Elevations
Z0E20	Level II or III Instrumentation, Conduit Schedules for 240V System
Z0E21	Level II or III Instrumentation, Conduit Schedules for 480V System
Z0E40	Level II or III Instrumentation, Device Ratings Schedules for 240V System
Z0E41	Level II or III Instrumentation, Device Ratings Schedules for 480V System
Z0E42	Level II or III Instrumentation, Device Ratings Schedules for 480V System
Z0E43	Level II or III Instrumentation, Device Ratings Schedules for 480V System
Z0E44	

City of Houston Standard Drawings - CADD File Layering (Level) Breakdown

All Text and Text related line entitles (i.e. Dimension & Leader Lines, Cross Section Lines, etc.) are placed on the layers beginning with 'T'; and each entity is placed on the layer corresponding to its color.

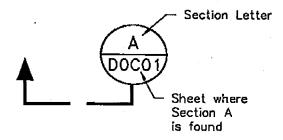
Example:			
<u>Layer Name</u>	<u>Color</u>	<u>Linetype</u>	<u>Description</u>
TXT-1	1 (red)	Continuous	Text, Dim & Ldr lines which are red
TXT-2	2 (yellow)	Continuous	Text, Dim & Ldr lines which are yellow
TXT-3	3 (green)	Continuous	Text, Dim & Ldr Ilnes which are green
TXT-4	4 (cyan)	Continuous	Text, Dim & Ldr lines which are cyan

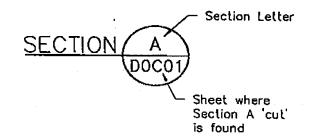
All Other entities are placed on layers beginning with 'L'; and each entity is placed on the layer corresponding to its color and linetype.

Example:			
Layer Name	<u>Color</u>	<u>Linetype</u>	Description
LCON-1	1 (red)	Continuous	Other entities which are Red & Continuous Lines
LCON-2	2 (yellow)	Continuous	Other entities which are Yellow & Continuous Lines
LCON-3	3 (green)	Continuous	Other entities which are Green & Continuous Lines
LCON-4	4 (cyan)	Continuous	Other entities which are Cyan & Continuous Lines
LCTR-1	1 (red)	Center	Other entitles which are Red & Center Lines
LCTR-2	2 (yellow)	Center	Other entitles which are Yellow & Center Lines
LCTR-3	3 (green)	Center	Other entities which are Green & Center Lines
LCTR-4	4 (cyan)	Center	Other entitles which are Cyan & Center Lines
LDAS-1	1 (red)	Dashed	Other entities which are Red & Dashed Lines
LDAS-2	2 (yellow)	Dashed	Other entities which are Yellow & Dashed Lines
LDAS-3	3 (green)	Dashed	Other entitles which are Green & Dashed Lines
LDAS-4	4 (cyan)	Dashed	Other entitles which are Cyan & Dashed Lines
LHID-1	1 (red)	Hidden	Other entitles which are Red & Hidden Lines
LHID-2	2 (yellow)	Hidden	Other entities which are Yellow & Hidden Lines
LHID-3	3 (green)	Hidden	Other entities which are Green & Hidden Lines
LHID-4	4 (cyan)	Hidden	Other entities which are Cyan & Hidden Lines

Other layers or levels may exist; i.e. LMHID-4, LSDAS-1, etc. The last digit represents the color no. & the digits between L and the last digit represent the entity linetype. Unused layers have been purged from the drawing file.

Suggested Color to Line Weights

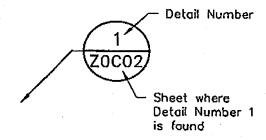

Color	Line Weight
1 (red)	0.35 mm
2 (yellow)	0.50 mm
3 (green)	0.70 mm
4 (cyan)	0.25 mm
5 (blue)	0.25 mm
6 (magenta)	0.35 mm
7 (white)	0.50 mm
8 (grey)	0.35 mm
9 (rust)	0.35 mm
10 (gold)	0.25 mm
11 (avocado)	0.25 mm

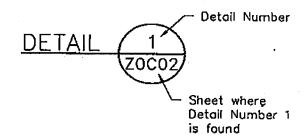

EXPLANATION OF SECTION & DETAIL INDICATORS FOR COH LIFT STATION DESIGN GUIDELINE DRAWINGS

Section Indicators

Indicator on Field of Dwg ('Cut'):

Indicator at Section:





<u>Detail Indicators</u>

Indicator on Field of Dwg (Callout):

Indicator at Detail:

Note:

Details are not referenced back to the sheet(s) where they are called out on the Field of Dwg. These references would be numerous, and locations redundant in relation to each separate lift station configuration.

Notes:

The sheet number is located in the lower right corner of the drawing Title Block in the space labeled "DWG NO."

The sheet numbers called out on the Design Guideline Drawings are for the purposes of referencing information in the Design Guideline Drawing package. The Design Engineer shall revise all sheet number references to reflect the appropriate sheet number in his project drawing package.

APPENDIX B STRUCTURAL DESIGN CALCULATIONS

STRUCTURAL DESIGN CALCULATIONS

Introduction:

The Design Engineer shall consult the City of Houston Design Guidelines Manual, the Engineering Design Manual and the Master Specifications for performing Structural Design Calculations.

Attached Structural Design Calculations were in conformity with the Engineering Design Manual for standard submersible lift stations. The Design Engineer shall revise or adjust these calculations to meet project specific requirements. These calculations shall be part of the Structural Design Calculations for a specific project.

STRUCTURAL DESIGN CALCULATIONS

INDEX

<u>Title</u> <u>No.</u>		<u>Sheet</u> <u>No.</u>
1.	Caisson Construction of Wet Well	
2.	Baffle Wall at Wet Well	2
3.	Thrust Blocks	3
4.	Connections	4
5.	2 Pumps - 100 - 300 gpm per pump	7
6.	2 Pumps - 250 - 500 gpm per pump	18
7.	3 Pumps - 250 - 2000 gpm per Pump	24
8.	3 Pumps - 2000 - 5300 gpm per Pumps	31
9.	4 Pumps - 500 - 2500 gpm per Pumps	43
10.	5 Pumps - 3 Wet and 2 Dry Weather per Pumps	51
11.	6 Pumps - 4 Wet and 2 Dry Well per Pumps	67
12.	Control Building	82

-	γ -			
		OF HO	USTON	3904-0
	PROJECT		· · ·	JOB NO 0/0/
	SUBJECT	PP LIFT.	STATION	1 //
		T		SHEET
	DESIGNED	1-6-95 DATE	CHECKED	DATE

	DESIGNED	1-6-95 DATE	Cucouse	
H		(2/11h	OUECYFD	DATE
CAISSON CONSTRUCT	10N"-4	9. 11/2 1	112011-	011 +
Method: Precast	(000	to D-		ILICHAIC
The same of the sa	CONCRE	re De	510 Fr & CO	nstruct-
The confractor at his	00 Data	والمراوي والمستويد	-1-1-1-	- L-/
pricast concrete au	Option,	may 5	ciect to	7/1/122
motherd Hours II can	CTS707.	Causson	(wnstm	Ct104"
method. He will confi	Car Coll	ne City	of Ho	uston
Engincerity norma	1-1-04 57	randord	Firmp	Station
Design Section 3 - 5	TMCTUFE	1)esig	o Crif	eria
1. Pecast Concrete	destign	_calcu	Jaffons	and
drawings shall to	e prepa	red zn	rder to	١
supervision of an	LEV. Sea	led by	au engi	neer
- registered in the	stale o	f. Lexa	5. , , ,	··
2. Precast zinits sh	all be	design	red to	resist
ing.	due to	TILLA	during	Sink-
3 ()			(ر. إسمار پرسسارا	/
3. Connections between	een zm	45 5ho	711 be a	lesigned
to transfer shea	r due	to filtin	ug aus	
tension due to B	ang-ref	force	s due	16
WALLESTON FRICTOR	and the first of the	יית כיע עו ערוני	aisson	7
wall and adjac.	ent Soil	<u>/</u>	1	
4. All joints between	- precas	of zun	5 Shall	be
COUNTRY OF V	· •			
5. All costs related 7	o alter	nate m	ethod	Shall
be at the Contra	ctors ex	pense		
	-1	/ 	100	
	- 100000			
		*		-11-20-20-20-20-20-20-20-20-20-20-20-20-20-
Hamilton and the second				(manage)

Houston	3921-00 JOB NO 0/0/		
Ba H/e a	/ of/		
NMP DESIGNED	11-20-95 DATE	CHECKED	DATE

Binch thick Baffle wall w/Port holes in bottom:

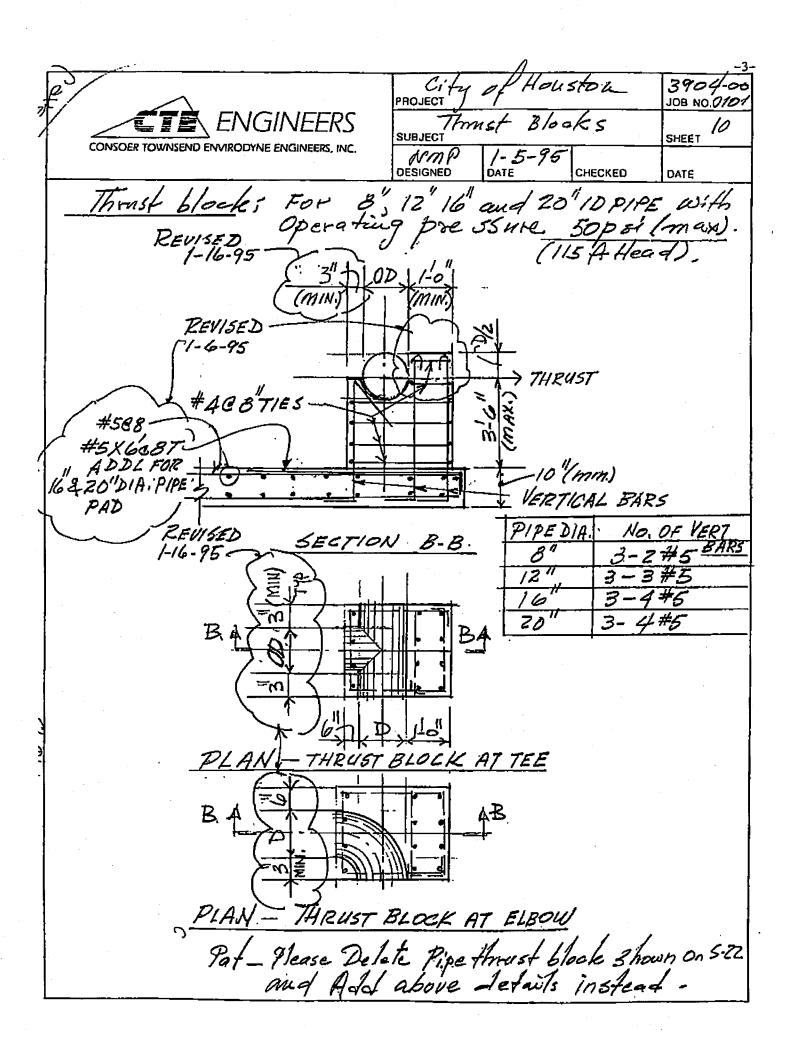
Assume. 2-6"x10 to 16" wide opings.

Differential water depth

The port holes get blocked.

M= 0.063x43=0.7 16/A Mu= 1.5 16/A

V= 0.063x43=0.5 6/A Vu=0.856/A


L= 9" wall

d= 4" F=0.016 thomas 50% wall remain

R= 1.5 x2=188 W/Port holes.

P= 0.0036 Az=0.17 m²/A #40/2 Vart

in mid thickness of 87 wall.

CONNECTIONS

Table 6.20.8 Shear strength of welded headed studs

I—Design shear strength limited by concrete:

Use smaller of the values from Eqs. 6.5.8a and 6.5.9

$$\phi V_c = (\phi 628 d_b^2 \lambda \sqrt{f_c}) n$$

Table A gives values for n=1, $\phi=0.85$

$$\phi V_c = \phi V_c' C_w C_l C_c$$

where:

$$\phi V'_{e} = \phi 12.5 d_{e}^{1.5} \lambda \sqrt{l'_{e}}$$

$$C_{w} = \left(1 + \frac{b}{3.5d_{n}}\right) \le n_{s}$$

$$C_1 = \frac{h}{1.3d_e} \le 1.0$$

$$C_e = \left[0.4 + 0.7 \left(\frac{d_e}{d_e}\right)\right] \le 1.0$$

where: $n_a =$ number of studs in back row; see figure for other notation

II-Design shear strength limited by steel:

$$\phi V_s = (\phi 35,344 d_h^2) n$$

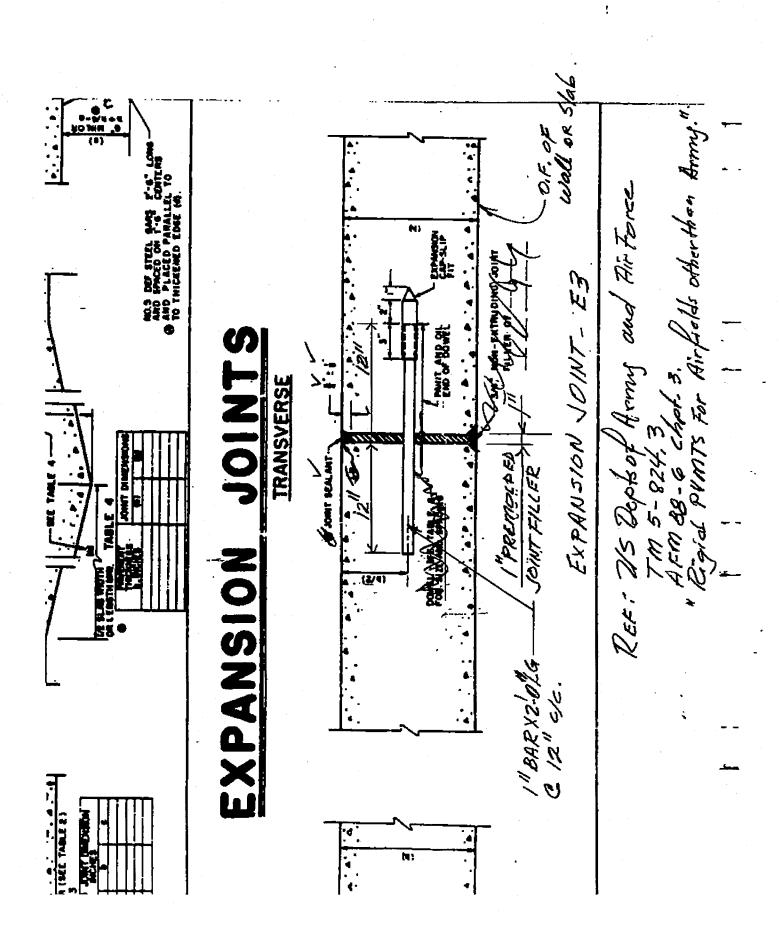
Table C gives value for
$$n = 1$$
, $\phi = 1.0$

								/		7
	-			Table A-	-φV _e , kips	3			÷	
f _c , psl	40	00	50	100	60	100		7000	80	000
d _b , in.	1.0	0.85	1.0	0.85	1.0	0.85	1.0	0.85	1.0	0.85
1/4	2.15	1.83	2.40	2.04	2.63	2.24	2.85	2.42	3.04	2.58
%	4.74	4.03	5.30	4.51	5.81	4.94	6.28	5.33	6.71	5.70
½	8.43	7.16	9.45	8.03	10.32	8.78	11,15	9.48	11.82	10.13
%	13.19	11.21	14.72	11.79	16.15	13.72	17.4	14.83	18.65	15.85
₹,	19.00	16.14	21.23	18.04	23.26	19.77	25.12	2 21.35	26.85	22.82
%	25.85	21.97	28.90	24.56	31.66	26.91	34.19	26.09	36.55	31.07
			_	Table B-	-φV _c , kips	3			_	
d _e , in.	1.0	0.85	1.0	0.85	1.0	0.85	1.0	0.85	1.0	0.85
2	1.90	1.62	2.12	1.81	1,77	1.51	2.51	2.14	2,69	2.29
3	3.49	2.97	3.90	3.31	4.26	3.63	4.62	3.82	4.94	4.20
4	6.38	4.57	6.00	5.11	6.58	5.59	7.11	6.04	7.60	6.46
5	7.51	6.38	8.39	7.14	9.19	7.82	9,94	8.45	10.62	9.03
6	9.88	8.40	11.04	9.39	12.09	10.29	13.00		13.97	11.87
7	12.45	10.98	13.80	11.82	15.24	12.95	16.4	13.99	17.60	14.96
8	15.20	12.82	16.99	14.44	18.61	15.81	16.4	17.08	21.50	18.27
9	18.14	15.44	20.28	17.24	22.21	18.88	23.9		25.65	21.80
10	21.25	18.06	23.75	20.18	26.01	22.11	18.10	23.88	30.04	25.53
11	24.52	20.84	27.41	23.30	30.03	25.52	32.4	3 27.57	34.67	29.47
12	27.94	23.74	31.22	26.53	34.20	29.07	36.9	1 31.40	39.49	33.67
	Table C—φV₅, klps									
Diameter, in.	У		¥4.		1/2	7,		γ.		%
	2.2		5.0		8.8	13.	8	19.9		27.1

fs=60ksi

Refi_PCI Design Handbook Fourth Ednor

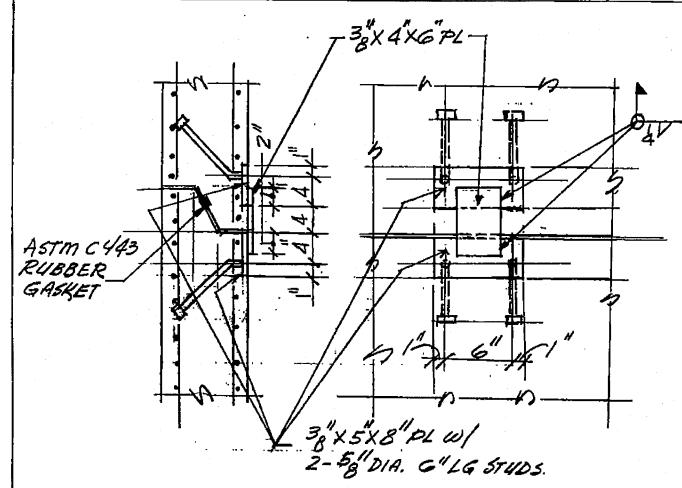
CTE ENGINEERS
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.


PROJECT	JOB NO.
REF; SI	SHEET
DESIGNED	DATE

6.5 DESIGN FOR WALL MOMENT STRENGTH

For structural walls in moderate height buildings, walls of uniform cross section with uniformly distributed vertical and horizontal reinforcement are usually the most economical. Concentration of reinforcement at the extreme ends of a wall (or wall segment) is usually not required for walls in moderate height buildings. Uniform distribution of the vertical wall reinforcement, as required for shear, will usually suffice for required moment strength. Also, minimum amount of reinforcement will usually be sufficient, not only for shear strength, but also for moment strength. Moment strength of a rectangular wall section containing uniformly distributed vertical reinforcement and subjected to combined moment and axial load can be easily calculated by:

$$\varphi H_{n} = \varphi[0.5A_{st}f_{y} \frac{e_{w}}{1 + \frac{P_{u}}{A_{st}f_{y}}})(1 - \frac{c}{\frac{e_{w}}{w}})]$$


where A_{st} = total area of vertical wall reinforcement $= A_b v_s \qquad (Verhical)$ $v_s = horizontal (length of wall)$ $v_s = spacing of vertical wall reinforcement$ $A_b = area of each bar (Vert.) or (Horiz)$ $P_u = factored axial compressive load$ $\frac{c}{v_s} = \frac{\omega + \alpha}{2\omega + 0.85\beta_1}, \text{ where } \beta_1 = 0.85 \text{ for } f'_s = 4000 \text{ V. shear } f'_s = \frac{\alpha}{v_s} \int_{0}^{1} f'_s \int_$

	PROJECT LP, SSC PUMP STN AZ JOB NO.0101
CTE ENGINEERS	2 Pumps - 100 GPM/Pump 1 OF Z. SUBJECT
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	NMP 12-14-95 CHECKED DATE
11/11/11/20//	DATE.
Causson-Si	ncrete Zinits installed by heing Method
Max. depth = 30	10"
Wall ' t = 8"	(nominal).
Consider half (t) d	lepth gets Suspended.
Hang-zip force = 0.	epth gets Suspended. 50x30'x0.67x0.150 = 1.504/4
derouida Six C	perimeter
V = pull-out For	rons(min.) per Joint ce per connection.
= TT X 6. 67 X 1.5	10 . s. >k
Vu= 1.4x 5.3 = 7.9	
Ket: PCI Design Hand &	dook, 4th Ed. table 6.20.8
de = 4 in. (min).	(15dg = 7.5"
4c = MX/2 = 18	
of = 2"Dia studs	L Zu L 11
L= 6" assur	
\$16 = 8.43 k XZ = 1	6.862
\$Vs = 8,8 4 xz = 17	_
or ove = procure	where pv. 6.38
1 = 1.43× 6.38	Cw = (1+ 25 do) = 1.43 / 11.2
9/c = 9,12k / Vn=7.	Cw = (1+ \frac{6}{3.5 de}) = 1.43 Lm = 2 142 Cz = \frac{h}{1.3 de} = 1.03 \(1.00 \)
	$C_c = 0.4 + 0.7 \left(\frac{18}{4} \right) = 3.55 \langle 1.00 \rangle$
(for 5 \$ \$ studes) 3 %	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4V = 9.12k	4" weld th, T= 3x4xz4=36k tillet weld, Tweld 4x6xz4=36.k
	Fillet Weld, Tweld 4 X 6 X 74 = 360.

HOUST PROJECT	3971-00 1010.01		
2 Pump.	Z OF Z SHEET		
NMP	12-14-95 DATE	CHECKED	DATE

Precast Units Connection Details, caisson Construction Method.

ENGINEERS
CONSORD TOMOSENIO ENGADODOVALE CALCINICEOS INIC

C / T /	3904.00 JOB NO. 0101
LIFT 5+0 SUBJECT 100	SHEET
NMP DESIGNED	/- 3-95 DATE

Wet Well:

Instite diameter = 8-0"

\[\frac{t=12\lldots}{\llosses} \], Outside diameter = 10-0" (ASTM C361, 102" \(\text{\chi} \) \\ \frac{t=12\lldots}{\chi} \], \[\text{\chi} \]

\[\frac{t=12\lldots}{\chi} \], \[\text{\chi} \]

\[\frac{10-1\lldots}{\chi} \lldots \text{\chi} \\ \text{\chi} \]

\[\frac{10-1\llosses}{\chi} \llosses \text{\chi} \\ \text{\chi} \\ \text{\chi} \]

\[\frac{10-2\llosses}{\chi} \llosses \\ \text{\chi} \\

Design Lateral poessure = 105 psf/f- depth with Surcharge lateral pressure of 100 psf for full deth.

"Sinking Caisson" Method:

1. Caisson at Final position. Inside water maintained to full depth, with full excavation

inside Completed. Net lateral pressure, p = (105-63)= 42 psf/ff

2. Base Slab, "tremie" method Completed and cured. Inside demotered Net Lateral pressure, p=105 psf/f-

3. Top Slab in place Net Lateral pressure p: 100psf + 105psf/f.

Ref: 1. ACI 318 and ACI 350 R.

2. Structural Analysis of Shells, Baker, Kovaleski, Rish

3. Circular Concrete lanks who

prestressing, PCA Bulletion 57.57 (130 72.017).

4. Formulas for Stress and Strain, Roark & Young

fc = 4,000 psi Gne. at 28 days

fy = 60,000 psi Rinef. ASTM AG15 Gr. Go.

CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	C174 OF HOUSTON 3904-00 PROJECT JOB NO. 0/01 Lift 5tn: 2 Purs PS SUBJECT 100-300 GPM Ca - SHEET NMO 12.8-94 ATT 1-4-95 DESIGNED DATE CHECKED DATE
Case I: Consider Cylindri REF: free at top with STRUC. K = 4/3(1-14)	ical shell fixed at base and the linear external lateral load,
ANALYSIS OF SHELLS = 1.3027 = 0.0	R= 4 ft 6514 t= 1, wall L=H= 30 ft.
100psf Fig.	
Base)	7// 2 0100 0100 000 000 000 000 000 000 000
Fig. 5.9 3250psf. Mmax = U.001x 3.10x302=	Kn=344 f=0.0068 Az=0.78 m/f #666"Vert.OF. (0.88in /f) ZA=0.78+0.05=0.83
Mudes = 1.3 x 1.7 x 3 = 6.0 Kn = 74. P=0.00/. fmin =0033	FR M UNEVEN SINKING.
A3 = 0.38 in # 60/2 Fig 5.11: Vm = x = 0.04 x 3.10 x 30' = 3 \$\forall Vc = 0.85 x 2 \ \forall 4000 \ x /2 x 9	3,72 K/A
Vu = 3.72 × 1.7 = 6.32 K	12.26/14

		-11-
	PROJECT	3904-00 JOB NO.0/0/
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	Lift stor 2 pumps 1 SUBJECT 100-300 GAM each	SHEET
	DESIGNED DATE CHECKED	7-4-93 DATE
Case II: Consider Cylind and free at to lateral load:	rical Shell hinged at population with linear extern	l base
Fig. 5-10 Mmax = 0.001X. M. = 1.3 × 1.7 ×	21420 201/1	
My = 1.3×1.7×	(2.8 = 6,216/A	
Kn = 68 Pm	= 0,0038	
	= 0.38 m²/ff 6 e/z Varf, IF.	
Vmax = 0.04x3.12 =	1230 = 3.72 k/ft 6.3 k (d) = 12.3 k/ft	
Consider "Sinking Caisson"	nethod:	·
Hung-up forces;		
T= 0.33x 1.0x 33 x 6		
Tu= 1.61x1.4x1.69=		
A36 = 3.97 = 0.07.		
Tilling Stresses! Ref: "Art of Tunnell ATILT= 6	<i>,</i>	
Ref: "Art of Tunnell	ing "K. Szechys pg. 79	3-794.
and the state of t	= wt. of Sinking Caiss = 17X9X33X1,04X0.150=	14/2 kg
	Consider maximum fil	H of
	6 inches. M = tau X = 6/2×33 = 0.01.	515
	11 12×33 4=16=2.21k	
	M= HX2/1 = 487/k	
40,	5xx = TT(10-84) = 57.96 ff	3

CTE ENGINEERS
LINUINCEI(3
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.

CITY OF HOUSTON PROJECT			3904.00 JOB NO.0101
Lift Str	44 SHEET		
NmP DESIGNED	12-8-94 DATE	CHECKED	1-4-95 DATE

f = 48.7 = 0.84 ksf = 6 psi axial Compression or Tension in walls. Tmax = 1.69 + 0.84 = 2.53 k/f Tumax= 1.65 (1.69×1.4 + 0.84×1.7) = 6.33 //f A A3= 6.33/60×09=0.12 in2. =0.06 m2/f eaface ZA3=0.38+0.06=0.44 wiff #6012"VEF. =0.78+0.06=0.84 wiff #606"VOF. at bottom H= 2.21k = APh/1. Ap = 2.21X4 = 0.268 ksf 01268 psf Pat base = 3250+268 = 3518 psf (8,2% higher) Prop = 100+268 = 368psf Bending Lue to Ap = 268 pcf. Ref: "Stress Coeff. for large horizontal pipes,"
James M. Paris, FAR Nov. 1921 Ma = 0.337 X0.268 X 5 = 2.26 16/f-. Horizontal Reinf. Print = 1.3 X1.7 X2.26 : 5.0 16/f-A3 = 0.44 in - #50/2 Hor Ea Face. -1= /2.5-25-/= //' F = 0,121 Km = 41. Pm 0.0013 X1.33 = 0.00/8
A= 0.24 in /4

_				
	6174	OF HOU	estoy	3904-00
	PROJECT			JOB NO.0/0/
	Lift St	5		
	subject 100-300 GPM/pump			# SHEET
	NMP	12-8-94	AAG.	1-4-95
	DESIGNED	DATE	CHECKED	DATE

Resistance to Buoyancy:

Consider total depth, = 33.0"

Top 5/a6 24" = TIX 10,08 x2.0 x0.150 = 23.94 k

Base = 1/a 6 24" = TIX 10,08 x2.0 x0.150 = 23.94 k

Walls: TIX 9.04 X1.04 x 29 x 0.150 = 128.48

(28) oh. say Wol = 176.36 k

P = TIX 10.08 x 33 x 62.4 = 164.32 k

Factor of Safety against floatation = 176.36

AW = 1.40 x 164.32 - 176.36 = 53.69 k

C or of = 53.690 = 51 psf

Note:

Pesign Consultant to Verify with geotechnical Consultant value of adhesion and for friction between Caisson walland Soils. Bessure grouting Can restore 50 psf and larger adhesion friction.

Base 5/ab:

2/plift pressure = 62.4×33 = 2.06 ksf.

Total 2/plift = 2.06 × 11×82 = 103.5 k

peripherial shear = 4.12 k/ft

Ok By M= M= 103.5 (3+0.2) = 6.6 k Corthogonal 84eel.

WHE PENDENT

WHE 1.67×1.7×6.6= 18.71k/ft × 1.41 = 26.4 k

d=18-3-1= 14" F=0.196 km=135 f=0.0033 A=0.55 wife

F. P. 17 P. A. F. W. and # 7 8 12 T. EW.

Or = 0.9 x 8 x 1.3 = 9.4 k x 1.3 x 1.67 = 20.3 /4/ff (d = 18, -2-6 = 15.5") Mu = 13 x 23.4 Km = 23.4 /16/ff F = 0.462 (0.24) A = 0.85 m² /ff # 708" Both. (parallel to long side (0.62 m² /ff (# 603 Both)) of facess apong). NOTES Provide addl. fars each side of opnge to compensate for interrupted by opngs. Provide similar rainf. for Valve Varilto Top state.			
EDE ENGINEERS CONSOER TOWNSEND ENGINEERS, INC. DESIGN LOS SUBJECT 100-300 GPM/PUMPS SHEET NMP 12-12-94 AND 1-3-95 DESIGNED OF 6-200 GPM/PUMPS SHEET NMP 12-12-94 AND 1-3-95 DESIGNED OF 6-200 GENT OF CHECKED DATE DESIGNED OF 6-200 GENTS Top 3/ab: DL: 24" Long 5/ab = 300 psf (w/o Bearms) fc = 4000 psi, fy = 60,000 psi Wefwell = 8-0 diameter L = 8' max - K ML = 0.3 x 8/a = 2.4 K NL = 0.3 x 8/a = 2.4 K AASHTO LOAD Factor ML = 0.3 x 8/a = 2.4 K (1.3 x 1.0 - 3.1 OF = 0.9 x 8 x 1.3 = 9.4/K X 1.3 x 1.67 = 20.3 //// A=24.2-1=21.5" Mu-13x234 Km = 66, (127.) = 30.4 ///// A=0.85 in f + 4788 Both. (parallel to long fish (0.62 in f) f + 588 T R R R H. (Transverse) NOTES Provide addl. Lars each Side of opngs to Compensate for Interrupted by opngs. Provide Similar rain f. for Value Vanlo Top Slab.			-14-
CONSOER TOWNSEND ENVIRODINE ENGINEERS, INC. SUBJECT 100-300 GAM/PUT SHEET 1-3-95 DESIGNED DATE 1-3-95 DATE 1-3-95 1-3-95 DESIGNED DATE 1-3-95 DATE 1-3-95 DATE 1-3-95 DATE 1-3-95 1-3-95 DATE 1-3-95		ראטובטו	
TOP 8/a6: Design Low ds: L1 Or 4-20 Trucke loading. DL: 24" Lone. 5/a5=300 psf (W/O Beams) L= 4000 psi, f= 60,000 psi We finel! = 8-0 diometer L= 8- max. ML= 0.3 x 8/g= 2.4		Lift Station: 2 Pumps SUBJECT 100-300 GPM/ Pump	SHEET
Design Loads: L! 300 psf or 4-20 Truck loading. DL: 24" Lone. 5/ab = 300 psf fe = 4000 psi, fy = 60,000 psi Welwell = 8-0 diameter L = 8. max. Mo: 0.3 x 8% = 2.4 [AASHTO LOAD Factor ML = 0.3 x 8% = 2.4 [ASHTO LOAD Factor ML = 0.3 x 8% = 2.4 [ASHTO LOAD Factor ML = 0.3 x 8% = 2.4 [ASHTO LOAD Factor ML = 0.3 x 8% = 2.4 [ASHTO LOAD Factor ML = 0.3 x 8% = 2.4 [ASX 1.0 = 3.1] Or = 0.9 x 8 x 1.3 = 9.4 [A	CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	NMP 12-12-94 ABA	
We well = 8-0 diometer L = 8. max - Moi = 0.3 x 8/8 = 2.4 Or = 0.9 x 8 x 1.3 = 9.4 /k x 1.3 x 1.67 = 20.3 /h/4 (qt = 18, 2-2 = 15.5") A = 24.2 - 2 = 21.5" A = 0.85 in /4 # 788 Both. (parallel to long side (0.62 in /4 from sverse) Notes from de addl. fars each side of opnas to compensate for interrupted by opnas. Provide Similar rainf. for Valve Varilto Top sides.	Top slab:		1
We well = 8-0 diameter L = 8- max - Moi = 0.3 x 8/8 = 2.4 Or = 0.9 x 8 x 1.3 = 9.4 /k x 1.3 x 1.67 = 20.3 /h/4 (qt = 18 - 2 - 2 = 15.5") A = 24 - 2 - 2 = 21.5" F = 0.462 (0.24) A = 0.85 in /4 # 788 Both. (parallel to long side (0.62 in /f f # 623 8 - 11) Notes from de addl. fars each side of opnas to compensate for interrupted by opnas. Provide Similar rainf. for Valve Varilto Top state.	Design Loeds	: 41 = 300 ps;	
We well = 8-0 diameter L = 8- max - Moi = 0.3 x 8/8 = 2.4 Or = 0.9 x 8 x 1.3 = 9.4 /k x 1.3 x 1.67 = 20.3 /h/4 (qt = 18 - 2 - 2 = 15.5") A = 24 - 2 - 2 = 21.5" F = 0.462 (0.24) A = 0.85 in /4 # 788 Both. (parallel to long side (0.62 in /f f # 623 8 - 11) Notes from de addl. fars each side of opnas to compensate for interrupted by opnas. Provide Similar rainf. for Valve Varilto Top state.	DL:	r H-20 Truck loading	Pi I
Nefwell = 8.0 diameter L = 8. max. Moi = 0.3 x 8/8 = 2.4 Mil = 0.3 x 8/8 = 2.4 Mil = 0.3 x 8/8 = 2.4 Nil = 0.9 x 8 x 1.3 = 9.4 lk x 1.3 x 1.67 = 20.3 ldff (of = 18"2-b = 15.5") Mu = 13x23.4 F: 0.462 (0.24) A = 0.85 in ldf + 4788" soft. (privalled to long side (0.62 in ldf) ff #623 5.0 ll) NOTES From de addl. fars each side of opnas to compensate for intersupted by opnas. Provide Similar rain f. for Valve Vault Top slab.	£ = 4000785	(w/o Beams) f = 60 eno by	
Note = 8. max. Moi = 0.3 x 8 / 8 = 2.4 [AASHTO LOAD Factor 3.22.1A ML = 0.3 x 8 / 8 = 2.4 X 1.3 x 1.00 = 3.1 Or = 0.9 x 8 x 1.3 = 9.4 X 1.3 x 1.67 = 20.3 14/4 (q = 18 / 2 - 2 = 15.5") Mu = 13 x 23.4 X x x x x x x x x x	Wetwell = 8-0 diamet	er significant	
Or = 0.9 x 8 x 1.3 = 9.4/k x 1.3 x 1.67 = 20.3 /4/ff (0 1	/	
Or = 0.9 x 8 x 1.3 = 9.4/k x 1.3 x 1.67 = 20.3 /4/ff (· Mon = 0.3x8 / =	2.4 SASHTO L	OAD Factor
Or = 0.9 x 8 x 1.3 = 9.4 k x 1.3 x 1.67 = 20.3 /4/4 (d=18, 2-b=15.5") Mu=13 x 23.4 Km= 23.4 /km= F:0.462 (0.24) A= 0.85 m² /4 # 708 BpH. (parallel to long side (0.62 m² /4 (# 603 Bott)) of Access expong) NOTES Provide addl. fars each side of opnings to compensate for interrupted by opnings. Provide similar rainf. for Value Varilt Top state.	11/L= 0.3x8/8=	2,7" X /,3X/,0 = 3,	/
H=24-2-2=21.5" F:0.462 (0.24) A=0.85 in H=4788 Bott. (parallel to long side (0.62 in H=628 Bott) of Access opng). NOTES Provide additars each side of opnge to compensate for interrupted by opnge. Provide similar rainf. for Value Varilt Top state.		9.4/12 X 1.3 X 1.67 = 20.3	3 /he/f4
F: 0.462 (0.24) =30.4 left point 66, (127.1) A= 0.85 in 14- # 70.8 Both. (parallel to Longside (0.62 in 14- # 60.3 Both) of Access Sprag). NOTES Provide addl. Lars each Side of opnge to compensate for interrupted by opnge. Provide Similar rainf. for Value Vanily Top Stab.	(q = 18, -2 - 2 = 15.5) $q = 24 - 2 - 4 = 21.5$	M 124221/ 1/des = 231	4 /k/4
10.62 in /4 # 708 Both. (parallel to fongsisk (0.62 in /4 (# 603 Both) of Access aprig). NOTES Provide addl. Lars each side of oprige to compensate for interrupted by oprigs. Provide Similar rainf. for Valve Vanlo Top Slab.		= 30.4 left D = 0.002	(127.)
	A= 0.85 m2 /4- #	4 708 Both parallel to	long side
	(0.62 km²/f- (#	6C8 Bott) of Access	Spag)
	NOTES Provide addl. Lars	each Side of opnes	*
	compensate for in	terrupted by opings	11 _
	· provide 3 mm/at ro	cinf. for Value Vanu	to Top
A MAN A MANA (TO PHOSE TIOD OF CONTRACTOR MI JOHNIALES SOU!			,
Value Vault: Consider flood condition w/ Sofurated soil	Walls: 0 kl	100 of CONCINTION WY JOHNTON	red 204

114/psf F=0.092 Q=100+7/4×7.67 = 3./2 k M= 3./2×7.67 = 3.1 16/A V7 = 0.35×3./2 = 1.12 / A VB = 2.0 K/A Mr= 1.7×1.3×3.1 = 6.9 14 K= 77 Pm= 0.0033 A==0.38 m2/f #508 VEF # 4012 HEF.

Note: Fla extension and Snil an Il- in'll increase

	PROJECT PROJECT	3904-00 JOB NO. 810/
CTE ENGINEERS	LIFT STATION - 2 PUMPS SUBJECT 100 - 300 GPM / PUM	ا جر
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	NMP 12-14-94 ARIN DESIGNED DATE CHECKED	1-4-95 DATE
Value Support Pad: (No Vault):	
Consider ave. lengtho	f Cautilever = 8.33	<u>'</u>
Loa-15 ! 12" (d	one. Jlab = 150 psf	
07 /	20 Truck loading: Juring Construction	. /.
$\lambda A = A \cdot C \cdot$	1 = = = alk/e	0219
=0.300× 8.33 ² /2	= 5.20 1k/A X1.4= 7.	3/k 25/k
OY 2×1.30×16×7.33	= 42.1k/A X1.7 = 71.5	/
d= 12-2-1=95"		
F = 0.09	Mu= 25,0 1/4	
Azm = 0,37m²	Kn= 278 P=,005	-4
#5@8"(TYP).	A3 = 0.61-	
	# 5067	- / /
	from West	,
7	Top slab	
Thrust blocks:	. If I a sail to a revise	,
	wf 50 psi pressure	
$/ = 11 \times 6$	3 x 50 = 25/2 1 3 h	_
M = 3.00×3.50 abo	• •	
My = 67×105=17.9	< \$ Ve = 0.85 X2 \ 900 6x 12	
$6t = 12X/2^{11} d = 9.5$	# = 0 00 XEV 700 WX 10	X 412-120
		! ,:
Kn= 199 - P= 00		

CTE ENGINEERS
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.

			- -
PROJECT	of Hous		3904-00 JOB NO 0101
LIFT STA SUBJECT 100	1- Z Pum 1-300 GP	m/pamp	SHEET 9
	12-19-94		1-4-95 DATE

Assume 20" & Pipe 10/50 pri pressure C 42" above floor T= 17×20 × 50 = 15.7 & Vn= 1.7×15.7=26.7 k M= 15.7×3.5×1.7=93.4/k PVc=0.85×2\\\
bt = 20\x20'' d=20-2-2=17.5' F=0.508 Km 2 184 P=0.0035 Az=1.22in2 3#6 0x 4#5 2" pripe v/50 pri pressure @ 42" of the floor Mu= 6×3.5×1.7= 35,7 /2 Vu= 6×1.7 = 10.2 k < \$V=12.3 k bt = 12x12" d=92" +=0.09 Kn: 397 P:0.0079 Az = 0.90 m² 345 Base 3/ab: 8% M_{ii} 17.9% M_{ii} = 5.0 1k/f 12% M_{ii} = 35.7, 3.58 = 10.0 20% M_{ii} = 93.4, = 26.0 1/9 f d:10-2-2:7,5", #=0056, 8" \$ 89. 0.002 · 0.18,002 (#5887 (mia) (0,46) , 12"\$ 179.' 0.0035' 0.32' (#5087 (0.46). 20"\$ 464 0.0093" 0.84 (#508"T Add/ (0.92).

	Houston	M, TX S	SHIS MPSTN-C2	3921-0-0
CTE ENGINEERS	2 Pumbs	@250-5	oo GPM Secured	JOB NO.0101
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	MMP DESIGNED	11-29-95	CHECKED	DATE
VALUE VAULT: 12/x12/2	11 x 2 2 11 (1)	alle f.	1211	DATE
VALVE VAULT: 12/x12/2 Grating-FRP LIVE LOAD = 1		alls 6=		,
GRATING SUPP. BEAM;	175 psf .		Δ	
$M = 0.575 \times 10.17^{2}/8 = 7.4$ $V = 0.575 \times 10.17/8 = 2.92$	742.92) Bmwt=	533 p/f		
V= 0.575×10.17/8 = 7.4	ik ?k _k	UBX15	lu=10.17	
Provide Single plate 32 PLX GX6" WT for 2-34" DI	2-1316X	nnectia 12"Horiv	Slotted h	oles
Vallow = 8.2k	> V=2.	92K		
Wall Face PL 3	3×6×8"	W/Z-3	фx619	Studs.
Free Tree	9.67		4:=1.00	•
b=9.67' 100p	act.	P, 6 = 1, P, 6 = 9, B = 9,	,	
1xed p=100 1. 15=	967psf	25° = 90	.4	
171x = 0.6147 x 7.9 + 0.0662	(90.4 = 8	1.8 K	Mux = 14.9	
My = 0.0324×9.4+0.0077×9	0.4 - 13.	214	= 1.7 = 22.5	leffe
My = 0.0324×9.4 +0.0172 ×9.	0.4 = 1.9	r K	= 3.2 /	The same of the sa

	PROJECT TY STOS.	3921-DO JOB NO DIO1
CTE ENGINEERS	29unps @ 250-500 Gpm, SUBJECT Secured Site	
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	DESIGNED DATE CHECKED	DATE
t=12" dy=12" 2-2=9	9.5" Fz 0.093	DATE
dy= 12-3- 2= d	3.5" F=0.072	
Bn4 207 1-0.00		58/20Fe Corners
BAH = 24 f. =0.00	A34 0. 18 Millet #4	VEIZHEF,
$B_{NV}^{-} = 242 P = 0.00$	+ 2, #c	se 6 Duls of seiz " IF.
Kny . 34 form = 0.00	13 ASV 0.20 Km/4 # 4	e/ZVEF.
Free	0/6 = 11,17 = 0.58	
	2×9.67	
Fixed - 5 6= 9.67		·
J PINES		
20=11.17		
Mx = 0.8592 x 9.4 + 0.04	406 × 90. 4 , = 11.7 16/4 Mu	=2014/4
Mt=0.0807 X9.4 +0.0	214×90.4 = 27	4.6
My=0.0807 X9.4 +0.05 MJ=0.1212 X 9.4 +0.05	214×90.4 = 2.7 584×90.4 = 6.4	4.6
My=0.0807 X9.4 +0.05 MJ=0.1212 X 9.4 +0.05	214×90.4 = 2.7 584×90.4 = 6.4	4.6 10.9 2.54/4
$M_{X}^{\dagger} = 0.0807 \times 9.4 + 0.03$ $M_{Y}^{\dagger} = 0.0245 \times 9.4 + 0.015$ $M_{Y}^{\dagger} = 0.0245 \times 9.4 + 0.015$ $K_{DH}^{\dagger} = 278 \qquad P = 0.000$ $K_{DH}^{\dagger} = 63, P = 0.000$	214×90.4 = 2.7 584×90.4 = 6.4 39×90.4 = 1.5 254 Azu=0.73 in ² 13 Azu=0.18	4.6 10.9 2.5 %/4 #5@80F@ #4@[2HEF
$M_{X}^{\dagger} = 0.0807 \times 9.4 + 0.03$ $M_{Y}^{\dagger} = 0.0245 \times 9.4 + 0.05$ $M_{Y}^{\dagger} = 0.0245 \times 9.4 + 0.015$ $K_{DH}^{\dagger} = 278$ $K_{DH}^{\dagger} = 63$, $F = 0.002$ $K_{DH}^{\dagger} = 17$. $F = 0.002$	214×90.4 = 2.7 584×90.4 = 6.4 39×90.4 = 1.5 054 A= 0.73 in ² 13 A= 0.18 23 A= 0.35	4.6 10.9 2.5 %/+ #5 @ 8 0 F @ # 4 @ [2 H EF (5 & 6 2 DWL SF 5 , & 1 2 DWL SF
$M_{X}^{\dagger} = 0.0807 \times 9.4 + 0.03$ $M_{Y}^{\dagger} = 0.0245 \times 9.4 + 0.015$ $M_{Y}^{\dagger} = 0.0245 \times 9.4 + 0.015$ $K_{DH}^{\dagger} = 278 \qquad P = 0.000$ $K_{DH}^{\dagger} = 63, P = 0.000$	214×90.4 = 2.7 584×90.4 = 6.4 39×90.4 = 1.5 054 A= 0.73 in ² 13 A= 0.18 23 A= 0.35	4.6 10.9 2.5 %/4 #5@80F@ #4@[2HEF
My=0.0807 X9.4 +0.02 My=0.0245 X 9.4 +0.05 My=0.0245 X 9.4 +0.01= My=0.0245 X 9.4 +0.01= My=0.0245 X 9.4 +0.01= My=0.000	$214 \times 90.4 = 2.7$ $84 \times 90.4 = 6.4$ $89 \times 90.4 = 1.5$ 15 15 15 15 15 16 17 18 18 18 19 19 19 19 19 19 19 19	4.6 10.9 2.5 %/4 #5 @ 8 0 F @ # 4 @ 12 H EF (5 @ 12 DWL.SF (6 2 V EF
My = 0.0807 × 9.4 + 0.05 My = 0.0245 × 9.4 + 0.015 My = 0.0245 × 9.4 + 0.015 KnH = 278 P = 0.00 KnH = 63, P = 0.000 Kny = 1/7. P = 0.000 Kny = 27, P = 0.001 BASE SLAB Dead Loads; 12 walls 2	$2/4 \times 90.4 = 2.7$ $84 \times 90.4 = 6.4$ $89 \times 90.4 = 1.5$ 15	4.6 10.9 2.5 %/4 #5 @ 8 0 F @ # 4 @ 12 H EF (5 @ 12 DWL.SF (6 2 V EF
My = 0.0807 × 9.4 + 0.05 My = 0.0245 × 9.4 + 0.015 My = 0.0245 × 9.4 + 0.015 KnH = 278 P = 0.00 KnH = 63, P = 0.000 Kny = 1/7. P = 0.000 Kny = 27, P = 0.001 BASE SLAB Dead Loads; 12 walls 2	$2/4 \times 90.4 = 2.7$ $84 \times 90.4 = 6.4$ $89 \times 90.4 = 1.5$ 15	4.6 10.9 2.5 %/4 #5 @ 8 0 F @ # 4 @ 12 H EF (5 @ 12 DWL.SF (6 2 V EF
My = 0.0807 × 9.4 + 0.05 My = 0.1212 × 9.4 + 0.05 My = 0.0245 × 9.4 + 0.015 Kny = 278	2/4×90.4 = 2.7 584×90.4 = 1.5 754 A= 0.73 in ² 13 A= 0.18 23 A= 0.35 43 43 = 0.20 #4 (X/1.5×8.67×0.150 = 29.9 (X/0.17×8.67×0.150 = 13.2 = 11.5×12.11×1.33×0.190=27.9 (Z/7)×1000×206 = 22.3	4.6 10.9 2.5 4/4 #5 @8 0 F.C. # 4 @ [2 H E F \$ 5 @ 1 2 DWL SF \$ 6 2 V E F
My = 0.0807 × 9.4 + 0.05 My = 0.1212 × 9.4 + 0.05 My = 0.0245 × 9.4 + 0.015 Kny = 278	2/4×90.4 = 2.7 584×90.4 = 1.5 754 A= 0.73 in ² 13 A= 0.18 23 A= 0.35 43 43 = 0.20 #4 (X/1.5×8.67×0.150 = 29.9 (X/0.17×8.67×0.150 = 13.2 = 11.5×12.11×1.33×0.190=27.9 (Z/7)×1000×206 = 22.3	4.6 10.9 2.5 4/4 #5 @8 0 F.C. # 4 @ [2 H E F \$ 5 @ 1 2 DWL SF \$ 6 2 V E F
My = 0.0807 × 9.4 + 0.05 My = 0.1212 × 9.4 + 0.05 My = 0.0245 × 9.4 + 0.015 Kny = 278	$2/4 \times 90.4 = 2.7$ $84 \times 90.4 = 6.4$ $89 \times 90.4 = 1.5$ 15	4.6 10.9 2.5 4/4 #5 @8 0 F.C. # 4 @ [2 H E F \$ 5 @ 1 2 DWL SF \$ 6 2 V E F

Houston, Ty Stals 3921-00 PROJECT JOB NO. 0/0/
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. 2 Pumps - 250 - 500 GPM 3 0 F3 SUBJECT Secure of Site Pumps SHEET
DESIGNED DATE CHECKED DATE
Resisting Force required = 1.25×87.3-93.3
Shear Transfer to Wet well will provide; 15.8 = 7.9 4
NOTE: See Sht. 2 of 4 of 3-pumps, 250-2000 Gpm EA.
Shear Transfer to Wet well will provide; 15.8 = 7.9 Well NOTE: See Sht. 2 of 4 of 3-pumps, 250-2000 Gpm EA. Secured Site pump Stn. Calos. For wall bracket and down box designs. RASE SLAP:
BASE SLAB:
L=11,17
net upliff = 0.062×10' = 0.624 kef ×1.7=1.061
-0.200 JA X1.4=0.280
M= 0.781×11.17/8×11.3: 15.81k/4
$L = 11.17$ $net upliff = 0.062 \times 10^{l} = 0.624 \text{ kef} \times 1.7 = 1.061$ $16^{ll} \le 106 = 0.200 \text{ u} \times 1.4 = 0.280$ $0.424 \text{ pef} = 0.781 \times 11.17/8 \times 1.3 = 15.8 \text{ k/f}$ $Vu_{3} = 0.781 \times \left(\frac{11.17}{2} - 1.5\right) = 3.19 \text{ k/f} \left(\frac{20.85}{4000} \times 12 \times 125\right)$ $t = 16^{ll} d = 16 - 3 - \frac{1}{2} = 12.5^{ll} = \frac{16.16}{4000} = \frac{16.16}{40000} = \frac{16.16}{4000} = \frac{16.16}{40000} = \frac{16.16}{40000} = \frac{16.16}{40000} = \frac{16.16}{400000} = \frac{16.16}{400000000} = \frac{16.16}{4000000000000000000000000000000000000$
t=16" d:16-3-2=12.5" F=0.16= \$Ve
The the the the
#5887 EW and #58/24 Bot EW.

G 177 PROJECT	3904-00. JOB NO. 0101		
570, PUI SUBJECT 25	SHEET		
NMP DESIGNED	10.25-94 DATE		11. 4.94 DATE

DESIGN CRITERIA:

(6ht. c2)

Design Grade Floor;

Live Load:

H-20 Truck Loading. OP

Max. Pump whi = 5000 lbs. Or 2/01 = 300psf.

Dead Load;

Consider 24" Slab w/o Beams - Simple and

Cost-effective:

24" Conc. = 300psf

fe = 4000psi, fg = 60,000psi

WET WELL:

d=74-2-2=21.5"

F=0.0021

F=0.0021

#60 6" Bofform (0.88 min = 0.0033"

#60 6" Bofform (0.88 min ft).

2/50 > #70 8" Both. (Parallel to Loro Side of Opng)

#508 Both & Top (Transverse direction).

NOTE: Provide Addl bars equal to 1 Interrupted by oping.

VALUE VAZILT: On ea. Side of opng (5tmct. 5td.)

Top 5/66:

L=11.17' Z/se Same reinf as wetwell—

Top 5/66:

_				~~
	C/TY PROJECT	3904-00. JOB NO DIO		
	STD.P			
	WMP DESIGNED	10-25-94 DATE		11-4-94 DATE

VALUE VALLT WALLS: Consider flood Condition with soil Saturated to full height, equivalent Lat. pressure of 80pf. 17.100psf D= 100+714 x7.67 = 3.12 k Mmax = 3.12×7.67 = 3.1 /4/4 V7 = 0.35×3.12 = 1.12 /2 V8 = 0.65×3.12 = 2.0 /2 Mu = 1.7×1.30×3.12 6.9 /4 Wall Vest span = 6-8" wall thick = 1-0" al = 12"- 2"- 2" = 9.5", F = 0.090 Bm= 76 P: 0.0014 Pmia 2 0.0033 -2/se A3= 0.38in2/f-#508" Vert EF. #4012"HOST. EF. VAZUE VAULT BASE SLAB; A=11-2" m=0.87. B=12-106(+) = 300psf. Loads: Top S/ab

35.92k Walls (10.17'42x12.87)x 0.150x6.67'= 197 n 13.17'x 13.87' 11: 2x20.8/13.17 x 13.87=227psf. 04 = 300psf.

 $M = 0.797 \times 1/.17/8 = 12.4 \frac{1k}{4}$, $Mu = 24.2 \frac{1k}{4}$ Or $M_A = 0.050 \times 0.797 \times 11.17 = 5.0 \frac{1k}{4}$ $M_u = 1.3 \times 1.5 \times 5.7 = 9.8 \frac{1k}{4}$ $M_B = 0.026 \times 0.797 \times 17.87 - 3.4 \frac{1k}{4}$ $M_u = 68 \quad p = 0.0013$ $d = 16 - 3 - 1 = 12^{11} \quad F = 0.144$ $\frac{215e}{4} \rightarrow 1000 \quad Fu$

CITY OF HOUSTON, TX. JOB NO. 0/01 57D.PS - 2 PUMPS 250-500 GPM. SUBJECT WITHOUT VAULTI SHEET , 10-26-94 11.4-94 NMP MAL

VALUE PAD: Consider average length of Cantilever: 8-81. Loads: 10 Ronc. 5/66 = 125 psf x 1.4 = 175 LL (No Truck) - = 150 psf px 1.7 = 255 LL (No Truck) = 150 psf)×1.7 . 255 (possible) = 150 psf)×1.7 . 255 M = 0.28 × 8.67 /2 = 10.5 16/4 × 1.56 = 16.4/6/4 = Ma V = 0.28 × 8.67 = 2.43 6/4 = 3.86/4 = Va d=10"-2"-1"=7.0" F=0.049. d8=10-3-6:6.50" kn = 335 P=0.0067 Az = 0.56min / A- #5@8 Top Con F=0.0423

NOTE: All other details Same as before.

Alf:

A = 7-8" M= 0.94 ACI- method-3 (68).

Ma = 0.040x.275x7,672 = 0.65-16/6-MB = 0.033x.275 x8,17 = 0.61 16/4. Provide 45012 TaB FW (min).

VA = 0.55/2 × 0.275×7.67 = 0.584/4 VB 0.45/2 60.275 \$ 8.17 = 0.5/ 4/A.

Provide 1-0" widthat bottom of Gr. Wall-

theck Bouyancy of Vault:

hw = 2.0 top slab
6.67 walls
1.50 Base slab.

hw = 10.17 Z4/1A = 62.4×10.17=635psf)

IDL = 24 Top slab = 300 psf 12 walls 18 Base soil

FNCW FFDC	Houston, Tx Stds ROJECT LP-35C PUMP STN. DZ JOB NO.0101
	BPUMPS@250-2000 GPM 10 14 UBJECT Low Profile - Secured SHEET NMP 11-10-95 ESIGNED DATE CHECKED DATE
Valve Vault: 15:0" x 20:3"	ESIGNED DATE CHECKED DATE
Gratug: FRP =	75 ps+
	50 4 75 psf
W= 1750 s # x / 4.	(33+3.17) = 656 plf
Bm wt	5ay = 44
$M = \frac{0.7 \times 18.25^2}{8} = 29.1$ $W = 12.78 \times V = 6.3$	ok messe messelle
Dapprox = 1.00 × 12.78.	
binole shet show s	308
30 7 × 6"× 6 W/ 13	ection, Table X-A pg 4-54 12 × 1/2 Loag (Hosic) Stated
Vallow = 8.2 k	
	" w/ Z-34" \$ X6"Long Studs.
Pit Walls: Ref. BOR	
End Panel = 19-3 x 9-8"	OPSE 0/6 = 19.25 = 1.00
10	oper 26 = 9,35
FIXED	p'b=0.967×9.67=90.4 pb=0.967×9.67=9.35
19-3th	67psf 18
$M_{x}^{+} = 0.1 \times 9.35 + 0.0276 \times 90.4 = 0.2613 \times 9.35 + 0.0644 \times 90.4$	3.43 /f Mu = 5.8 14/ft
My = 0.2043 x 9.35 +0.0845 x 90.4	= 8.26 = 14.0 $ = 9.55 H/f = 16.2 H/f$

	PROJECT TX Stas.	3921-00 JOB NO.0/0/
CTE ENGINEERS	3 Promp 87a - Valve Vaul	+ Zof4
CONSOER TOWNSEND ENVIRODYNE ENGINEERS. INC.	NMP 11-13-95 CHECKED	DATE
My = 0.0243 x 9.35 + 0.0159	9×90,4:1.7# M== 7.9	
du= 12-2-2-9.5" Fr= 0 dy= 12-3-6=8.5" Fx=0	0.09 0.07	
KH = 200. R= 0.0039	A3 = 0,40 in /4 4 50	9.17.40F 9/2.40F@(o.
K# = 83. P# 0.00.16	Asmin 0.33 in 14. #50	IZHIF.
Ku= 180. /=0.0034	A3 = 0.89 #50	12 Vor
Kt = 32, Rv = 0.00/3	A30 = 0.37 #501	34"VOFDWL ZVIF
	· • • • • • • • • • • • • • • • • • • •	
Base 5/26: toats: 81: 1'wall 16" Bes 1'wall		
toasts: DL: I wall	5 2X8.67 X14.50 X0.150 a	37.7 6 1
16 Bes	(5/46 = 20.25 X /5 X /.33 X 0./5	0=60.6kl
Di 1	1 x 17: 13 XO:6/ X 0:150	123.3 4
491175 13×20,23×	1x 0.062 = 170.627	
Try 16"wide projection Soilw# = 0.06x1x \(\Du Heq d = (1.25 x 170)	of Base Slab.	
Soilw# = 0.06XIX	9 (18.25 + ZX15.50) = 40.9	k-L
DWOLKET = (1.25 × 170	0.6-123.3-40.9) = 49. kg	!
Consider this provided by wall to wet well	Shear transfer than	Side
wall to wet well!	, /	
V= 24,5 4/ Wall-	#7012 "dw/5 = 8#7	dw/s.
4600.60 in2		
$\phi V_{c} = 0.85 \times 800 \times 0.6 1$ OR = 0.85 \times 2 \tau \times \frac{2}{40}	4000 = 25804#.	
OR = 0.85 x 2 11 x 62 \ 40	00 = 12160 #	,
Vu = 24.5 × 1.7 = 41.65 k	< 8#7 = 12.16 × 8 = 97.20	9 *
φVc = 0.85×2 14000 ×12×9	36 = 123. 86 × Nu: 41.6.	5 L
· · · · · · · · · · · · · · · · · · ·		

	Hous ten PROJECT	Tx 54d	5	3921-00 JOB NO.010
CTE ENGINEERS	3 Pomps	s - 250 - 2	ZOOO GPM	30\$4
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	WMP DESIGNED	11-13-95 DATE	CHECKED	DATE
Bracket from wet well wa	ell:			
Consider 5' wide ba	se slab	and s	5-0" of w	all's
Consider 5' wide ba	apporte	d on to	5 brack	let.
Ps= 1-6" 5/26 @ 225 11 @ 150 psfx5	psex5	· 1125 #	1/4	
12 @ 150 psfx5	(. D	= 750 1875 +	¥1/.	
Pwall = 0.150 × 8.67 × 5	5 = 6.50	1815°	77	
W= 2.6 stab	= 375 p	sf.		•
Assume Wet Well a	iall t	22		
lmin = 1-0"				
Iman = (10.25 - 10.2.	5 Cos 4	5°)+1.00	= 4.00'	,
lave = 2.5'		· .		
Mais 0. 375 x 2.5/2.	2.3 K	A		
1.875 x 2.5 _ =	7014/6	,		ı
Mmax 0.375×4/2 =	3,0			
1.88×4 = 1	1.52 0.52 14/H	EX/17= 17	1.91/4	
4= 18-2-1 = 15"		_		
#=0-225 Km = 8	O Pm	0.00.	2 '	
	, A	20.32. 46.812 (in/ff	
Provide		46 C/Z (0.44).	
Wall as bracket: L=4 P=6.5k, W=1.3	4.60	M- 1 -1	uli'	. Ik
	~/H- /	1,3X	1.62/2= 19	1.0
OR . Fupliff = 24.5 k	N	M2 6.5) 1.3 x c	5×4.6=1	4,016 1216
	,,,	אווייןד	_//	<u></u>

		_
	Houston, Tx Stds.	3921-00
CTE ENGINEERS	IPROJECT	JOB NO./0/0
CONSOER TOWARSEARD EARGEOTHALE ENGINEERS	3 Promps - 250-2000	SHEET
COMOCK TOWNSDAD ENVIRONME ENGINEERS, INC.	NMF 11-14-95	
DI Pen "15 11/ 12	DESIGNED DATE CHECKED	DATE
Ref: PCA- Simplified De	sign shear walls, pg.	6-13
Mu = 1.4x 44, = 62/6	- 1.1	
Muz = 1.7 × 113 = 19216 C+	controls.	=0
\$ Mm = \$ [0.5 Ast fy lw (1	+ Aug (1- E) Age	#6017 HEF
$\frac{c}{c} = .\omega$	1349	044X8X2
<u>c</u> = <u>w</u> lw = zw + 0.85β, β,	= 0.85 for fo = 4000 = 7	.04 m2
= 0.085 0.17+0.72 = 0.095	lu = c	67×12=104"
PMn= 0,90[0.5x7.04X	60×104×0.9057 W= A	st x fy
Base 5/06: 12	016 >> 192 1k = 7.0	h, for
l= 19! 3" - 149	0"= \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4 × 60
. , —	709 = 0,0	785 185
Wyfiff = 9x0.062 - 1	1.33×0:15 = 0.367 Es	₽. ↑
M: 0.362×19.25/ . //	18 16/fix 1.7×1.3 = 37.16=	
V=02/24/0-5/2		
V = 0.362×19.25/2 = 3.	48 /4 = 7,7 /4:	= /a.
t : 16 (mm) . d = 16	-2-4 - 13,5	
	F = 0./82	
	Km = 203 P= 0.004	/
	A3 = 0.65 M	
	# 608 7 in	
	# ECB"Tin	short
	# 6 CO / XXX 1	i i
Pit Side walls:		}
a	6 = 15/9.67 = 1.6 > 1.0	2/50 1.0-
15.0	\$62 = 9.35 \$6.0	· · · · · · · · · · · · · · · · · · ·
Free 2		37
1	\$62 = 90.4 pb = 9.	- alk/c
Fixed	Mcant = 0.1x8.67/2 0.1x8.673/2	2 = 3.8 14
Arritage and the second	0.1 × 8.67%	0 = 10.7
F= 100	967p=1=18' Mu = 2514/A	6 17 14
117	M = 278 P=	0.0054
	#3-0.621	,2/,4
		1 -20.00

3904-00 JOB NO.018/

					- 28-
		C/77 PROJECT	of Hou	ISTON, TR	3904-00 JOB NO.010
	CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	STD-PS-		,250-2000 GPM EA.	SHEET
		NMP DESIGNED	10-27-94 DATE	CHECKED	(1-4-94 DATE
-	WET WELL:			(3ht. 66)) 1
	TOP SIAB: IL: Equipme OR H-20 Max pum	int et	. = 3	oopst.	
	OR' H-20	Truck	Looding	2. Z.	
•	DL: 24" Thick	Couc-Sla	6 = 30.	0 psf.	
	-max = 2 \-2.15 + 8.252 =	15.92 +2	10 = 17.9	22	
	M= 0.300×17.97/8 = 12	20144)	11.0° =	12.0 14/A	
	$M_{LL} = \left(\frac{17.92+2}{32}\right)1.3 \times 16 = 12.$	9 1k/4-	/-	Saw	Lane
	Or = 0.9x17.92x1.3=21	OFFX	1.67 = 3.	5.0 HA t	actor
	MOL+1133.01/4/4		Mu = 4	7.0 14/4X	11.3=61.1
	d= 24-2-7:21.5	NOTE;	Addition	AM= 2	int due.
	F=0.462 K=132	/	to Opng s 0033	AKn= 72	ヺ . ጏ ′~
	P=0.0024	1000	0057	7/1/	· (1)

A3 = 0.85 in/f4 P=0.0090 Az=1.03 m/4 =606 BoH(0.88). #808 (1.19) Both VALUE VAILT: TOP SLAB =

MDL = 0.300 × 19,25/8 = 13,9 14/4 × 1.0 = 13.9 14/4 MIL= 0.9 × 19.25 × 1.3 = 22.5 1/4 × 1.67 = 37.6 16/4 Ma= 51.5 16/ft Addl. Mom. due to opng. DM = 2,0×13,9= 27.8 Maje = 13 (51.5+27.8) = 103/4/4 Km= 223 AB= 1,10in #8 e8 Bottom - #508 Temp. Steel. P= 0.0043

	PROJECT	OF HOUS	cton, Ter	390 fr 00
ENGINEERS		3pun	1075	JOB NO.010/
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	SUBJECT	250-2	000 - GPM	SHEET
• .	NMP DESIGNED	10-31-94 DATE	CHEOMES	11-4-94
NAIVE VAUIT WALLS: Same as for &	DESIGNED	TOVIE	CHECKED	DATE
THIVE VAUL WALLS:	_ /	, /		
Same as for t	ump 500	1400 - 27	oumps.	•
Par //	f			
DHSE SIGHT	411.1			,,
18043: 100 2100 2	4 thek	= X	28pst	470
Or 2420.8 /2		_ 1	ocop steu	se 5/0
10/20.25	X15.0 = 13	7psf:	1	
Walls (2×15,0+18.	42) X6.67	X0.15 = 16	o pop.	224
BASE Slab: 100 ds: Top Slab Z 11 Or 2×20.8/20.25, Walls (2×15,0+18, 20,25 x	15,6	4-2 -	'	1 1001 -0
		W= 76	opy wa	= 1154 psf
A = 13-8" M: 0.71	<i>i</i> .			(1.52)
_	_			,
MA = 0.068 X1.15 X13.67	: 1464	40		•
MB:0016 X1.15 X 19.25	- 1.01kl	' .TT . 'K		
· · · · · · · · · · · · · · · · · · ·		tt –		
t=16" d=16-3-1=1.	2"			
F = 0.144	0		i	
Fm = 101 f= 0.002		0.0033		
	733=	0.48 in	. , . ,	
#5@87 EW	,			
#5012' BOH EW.	t = 16	Base Sla	· 6 .	
				}
check Bouyavey of Value	e Vault	,		
		p slab	. 300	10 E 1 1
hw = Top slab t= 2'01, 2' wall ht = 6!8"	W	alls 1	= 160	ps#
Base t = 1.16"	501	ills 11/6");	= 60	"
· · · · · · · · · · · · · · · · · · ·	Bas	e Slab	z 225	//
2/plife = 635 psf 1			745	ps #
F.S = 745 = 1.17 2 1.20			•	.
Note: May morease	a base	Slab 12	a rechan	Lam
Note: May processes	F5 = 1.	27 - 26	Jewiel	/ 60/11
	1,5 - 11,	<u>-/ ·</u>		
		-		

	•
CTE	ENGINEERS
	WIRODYNE ENGINEERS, INC.

PROJECT	3904.00 JOB NO.0/0/		
SUBJECT W/	SHEET		
DESIGNED	10-28-94 DATE	CHECKED	11-4-94 DATE

VALVE PAD: (sht. c9) Consider two-way slab

A = 10-4"

B = 15-0"

M=0.69 W. 125psf MA = 0.068 x 0.43 x 10.33 = 3.1 16/4 MB = 0.016 x 0.43 x 15.0 = 1.6 16/4 d=10-3-2=64" Bry 73. P= 0.00/4 Amin : 0.25 #50R Provide #5012 T&Bott. Ew. F=0423 VA = 0.85 x 275 x 10.33 = 1.21 4/A-VB = 0.15 x 275 x 15.00 = 0.3/4/F Consider Soil Bearing press = 1500psf W= 4tr. Floor = 1.214/4 GR Bm 10×20 = 0.22 Width of footing = 1.43/1.50=0.95/4 Provide 16 with at bottom. Alt: Consider contilever from wet well: L = 11.33'

L= 11.33 | Wa= 43075f

Mu= 0.43×11.33/2= 27.6 1/4

d= 12.5/ab - 2- 2= 9.5 1

F= 0.09 | f= 307

P= 0.006

A= 2.68 eu/ff

608 Tat Wef well

Wall.

OT #508T + #5016"Addl.

Confinceus & wall.

CONSCIENT ENGINEERS INC. CONSCIENT TOWNSEND ENGINEERS, INC. WET WELL: TOP SLAB: 1-7:36. 1-7:36. 8-92. W= 12'5/ab = 150 psf. 12'10. 1-7:36.	<u></u>				
CONSCRIPTIONNEND EMPRICIONNE ENGINEERS, INC. WET WELL: TOP SLAB: 1-7.31		PROJECT	OF HOUST	0 KI	
DET WELL: TOP 1/AB: 1-7:32 1			3 Pumps.	2000-5300 PM/PUMP	7
1-7:36" 8-92	CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	KMP	10-31-94	JAM	11-3-94
116" 8-92 W= 12" 5/ab = 150 pcf 11 2/1. = 300 pcf OR H-2010=drug; OR H-2010=drug; OR O.300 NB. 8/B = 2.90 k/A	WET WELL: TOP SLAB!		(Shf. 611)	
11 2D. = 300psf OR H-2010ading, OR H-2010ading, OR O.30008.8/B = 2.90 k)4 OF O.9008.8/B = 2.90 k)4 OF O.900.8/B = 2.90 k)4 Escape of the season isolated to	_ _			•	
11 210. = 300 pcf. OR H-20 loading. OR H-20 loading. OR H-20 loading. OR O. 300 pc 8/8 = 2.90 k) of Semitary factor OF 0.900 8.8/8 = 2.90 k) of Semitary factor OF 0.900 8.8/8 = 2.90 k) of Semitary factor OF 0.900 8.8/8 = 2.90 k) of Semitary factor OF 0.900 8.8/8 = 2.90 k) of Semitary factor Mu = 24/30 k/f. Mu = 300 10.8 k/f. Mu = 400 = - 40.2 k/f. Mu = 400 = -	8-92	W= 12	15/06	- loost	1
0.300 p 8.8/g = 1.45/4/4 × 1.0 × 1.3 = 1.9/2 0.300 p 8.8/g = 2.90 k) of 04 0.9×88×13 = 10.3 14/4 × 1.67×13=2242 Mw = 24/30 16/4 A = 12-2-1 = 9.5 = 0.090 Km = 270		12	2/D. e	300ps#	
0,300 p 8. 8 = 2.90 k) of Sanitary factor 04 0.988 x 1.3 = 10.3 k/4 x 1.67 x 1.3 = 2.4 k/4 Mu = 24.70 k/4 #5e8 Both (Long.) #5e8 Both (Long.) #5e8 Both (Long.) Mu at a point 150 x 6.0/2 = 0.45 Mu at a point 150 x 6.0/2 = 0.45 Mu at a point 150 x 6.0/2 = 0.45 Mu at a point 150 x 6.0/2 = 0.45 Mu at a point 150 x 6.0/2 = 0.45 Mu at a point 150 x 6.0/2 = 0.45 Mu at a point 150 x 6.0/2 = 0.56 k/4 Mu at a point 150 x 6.0/2 = 0.56 k/4 Mu at a point 150 x 6.0/2 = 0.56 k/4 Mu at a point 150 x 6.0/2 = 0.56 k/4 Mu at a point 150 x 6.0/2 = 0.56 k/4 Mu mid helf Mu = 2.31 k/4 in mid helf Mu = 2.31 k/4 in mid helf Mu = 30 x 10.36 = 310.8 k Mu = 11.97 12.05 k Mu = 30 x 10.36 = 310.8 k Mu = 11.97 12.05 k Mu = 491 - 14 x 5.75 - 17 x 78.7 k Mu = 17.95 x 17 = 30.53 Mu = 491 - 14 x 5.75 - 17 x 78.7 k Mu = 181.7 k Mu = 181.7 k Mu = 181.7 k Mu = 181.7 k Mu = 491 - 14 x 5.75 - 17 x 78.7 k Mu = 181.7 k Mu = 491 - 14 x 5.75 - 17 x 78.7 k Mu = 181.7 k Mu = 491 - 14 x 5.75 - 17 x 78.7 k Mu = 491	M= 0150 X 8,8 /0 , 145	OR H-2 K/E v	POloadic	1016	
04 0.9888X13 = 10.3 (4)	0.300 p 8.8/B = 2.90	k)A	7,3	avitare L	Lon
	OF 0.9X88X13 = 10.3 14	14 ×1.	67X45=6	2.41	
#= 0.090 K = 270 P = 0.0053 A = 0.62 in #608 Boff Train #508 T.EW Example	,		Mec = 2	4.30 14/4	ļ
Beaus: DL : W at & of Span 150x7.3/= 0.55 4/4 W at at a point 150x6.0/2= 0.45 Bm wt. 1.5x3.0x0.15 = 0.67 \ = 0.75 \ Hatches & 30psf x 2.55 = 0.08 \ = 0.75 \ = 0.08 \ = 0.75 \ = 0.08 \ = 0.75 \ = 0.08 \ = 0.75 \ = 0.08 \ = 0.75 \ = 0.08 \ = 0.75 \ = 0.08 \ =	= =0.090				
#5e880tf (Long.) Loads: DL: W at & of Span 150×7.3/2 = 0.55 4/t W at & point 150×6.0/2 = 0.45 Bm wt. 15×3.0×0.15	Km = 270 P=0.0053	Az	0,62 00		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Beaus:	, 1		#5&87; #5&880;	Hollong.)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Loads: DL: W, a	of sp	an 150X7	1.3/2 = 0.55	4/4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bm 11)+1	GEXZONY	150X 6.0	1/2 = 0, 45 = 0,67	> 6
$W_{01} = \frac{21! (8300) psf}{(3.0572.551.50)} = \frac{2.3}{4!} = \frac{41}{4!} = \frac{41}$	Hatches C	2 30ps £ x	2.55	ー チ・レ・レス	/ 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-w,	X/3,657	2.554/150	/=2,3/4	H = CE1
$W_{11} = 2.3/k/f \text{ in mid-holf}$ $20.72 = 20.72$ $W_{01} = 2.3/k/f \text{ in mid-holf}$ $20.0 of Suppotential for the first state of the first s$	DL. Con	sider u	2 = 0.55	k/4 in	mid-half
$W_{0L} = \frac{7.77^{k}}{7.77^{k}}$ $\frac{7.77^{k}}{2.85}$ $\frac{7.85}{1.43}$ $WL = \frac{11.97}{12.05}$ $\frac{1.43}{11.97}$ $\frac{1.43}{12.05}$ $\frac{1.43}{11.97}$ $\frac{1.43}{12.05}$ $\frac{1.43}{11.97}$ $\frac{1.43}{12.05}$ $\frac{1.43}{11.97}$ $\frac{1.43}{12.05}$ $\frac{1.43}{11.97}$ $\frac{1.43}{12.05}$ $\frac{1.43}{11.97}$ $\frac{1.43}{12.05}$ $\frac{1.43}{11.97}$ $\frac{1.97}{12.05}$ $\frac{1.97}{11.97}$ $\frac{2.85}{2.59}$ $\frac{2.85}{2.95}$ \frac					4 / /-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25.72.			and or	al Support
$WL = \frac{1.43}{11.97} \frac{1.43}{12.05} = \frac{1.43}{11.97} \frac{17.05}{17.05} = \frac{1.43}{11.97} \times 6.90 = -9.9 \times 57.5$ $\frac{5.98}{30.0} = \frac{5.98}{30.06} \times \frac{5.98}{30.06} = \frac{-1.43 \times 6.90}{17.95} = \frac{-7.4}{30.95}$ $V_{L} = \frac{12.05 \times 1.4}{17.95 \times 1.7} = \frac{16.87}{16.87} = \frac{1.43 \times 6.90}{10.06} = \frac{-41.3}{10.06} = \frac{1.43 \times 6.90}{10.06} = \frac{-41.3}{10.06} = \frac{1.43 \times 6.90}{10.06} = \frac{-41.3}{10.06} = \frac{1.43}{10.06} = \frac{1.43}{10.06$	The Day of the state of the sta	•		. _	
$\frac{5.98}{30.0 \ 17.95^{L}} = \frac{5.98}{30.0 \ 17.95} = \frac{-2.85 \times 2.59}{-11.97 \times 2.59} = \frac{-7.4}{30.9}$ $V_{L} = 12.05 \times 1.4 = 16.87$ $V_{L} = 17.95 \times 1.7 = 30.53$ $W_{L} = 491 - 1.4 \times 57.5 - 1.7 \times 72.2$	1 4 1 4 4	- / - /			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.98 5.98	- 2	·85×2.5	9 = - 7.	
17.95×17=30.53 Mu= 49/- 1.4x57.5-1.7x 72:2	30.0 17.95k 30.0 k /7.	75 - 5,	98×6.90	= - 41,2	7 - 72.2
Vu= 47-40 k (1.58) = 491-80.5-122.7= 787.8 k	17.95×1.7 <u>=30.53</u>	Tu = 491-	- 14457.5-	1.7x 72;2	
	Vic= 47-40 k (1.58)	-491-	80.5 - 122.	7= 787-8	K

	PROJECT OF HOUSTON 3904.00 JOB NO.0101
ENGINEERS ENGINEERS	STO TUMP STN. 3 PUMPS & B' SUBJECT 2000-5300 GRM SHEET
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	NMP 10-31-94 LAM 60 11-7-94 DESIGNED DATE
bh = 18"x 30" d=30	9-3-1=26
F e/e	014
By = 287.8/1,014=	784 1=,0055
•	
= 50,32 k \ V. = 6	7×0.85 = 2#7 Top Cont. 47.46. # 4012" [] Im ozet.
/ ia	<u> </u>
VALUE VAULT:	
TOP SLAB:	W= 12"5/66 :150 B5 + 300 B5L
l=716"	W = 12"5/a6 = 150 ps = 300 ps = 16" 2101 = 300 d= 21" or H-20 Loading. F= 0.441
(19300)	Or H-20 Lo ading. F= 0.441
MI=0.150X9.0/B = 1.5	16/4 (3.0) × 1.32
0.900×9.0×1.3 = 10.6	X1.3X 1.67 - (26.7)
Km=318, f=0.0062	1h/4 × 1.3×1.67 = 25,7 /h/4. Az = 0.66xu2 #608Boff. (Trans)
Km=(66) (P=0.0033)	A3= 0.83 , #508 Top EW and
Beams; Use-	= #708 Boff, Transv)
1= 21-9" =/c. W= D1: 12"5/c.	(300) 6 /50x 3.75 = 0.564/47 1 45
- 4 - 4 H	- / / / / / / / / / / / / / / / / / / /
HATEN C	30PSFX 2.55 = 15.02 (1/49) (4.3/)
(6.29) 2 300 pcf(3.75 + 1.5 + 2.56 = 2.34 4 × 1.7 = 3.98 4 2.) × 1.3 = 484 W= 3.43 4 W= 5.5 4 6.29 6.29
$M_n = \frac{5.51 \times 21.75}{2} = 325.$	8 813=424 (1 = 3.43k/4 We= 5.5/4/4
Va =57.24 Va = 47.56 k	(54.13^{k}) $f = 0.662 (0.882)$ $21 = 40.66$ $K_{m} = 640. (549)$
\$ 1/2 = 0.85 x 7 \ 4000 1 × 18 x	21=40,66 K=640, (549)
φV,=7.0 # 4/ 1/210"9	6 thmost / p=0.0135 (0.01/3)
\$ Vs/1/2 = 0.016	A = 5.10 m 7 #8 Both
(See 26) 10 T -//	
See Shi. 10 - Top slab. +	= 24 W/OBMS) (8#8 Bott in 24 with
* * * * //	•

	CMY	OF Hous	TON	3904-00
	PROJECT		•	JOB NO.0/0/
CTE ENGINEERS	570 Pur	nPSTN-37	PumPs - ,	9
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	SUBJECT	2000 - 53	OO GPM P	SHEET
	NMP	10.31.94	1/4m	11-7-94
	DESIGNED	DATE	CHECKED	DATE
VALVE VAULT: WALLS:	£=1711	h= 1-6"+	9-2641.01=	11/2/=117
	•			·
1 = 100 psf	pl.	0.096	D - 1007	11036 117
	7/18 -	- 0.10	$I = \frac{1}{a^2}$	X //./
- BODSFI		20.707	= 6,65	+1.036 _{× 11.7} -k
h=11.7	M	- 6.65X 7.82	117-00	14/
	max	7.82	= 7.7	14-
	Muz	-7X1.3X 9.	9-07	1611
		-1/1/1/1/11	1 22,0	7/11-
1036 pet = P	• • • • •	F = 0	0,081	l
t= 12" = 12-24- 1= 9"		By= 1		ļ
1 1/1 4=12-27-7=9"				
t=16" d = 13" F=0.169		<i>1</i> .	0053	
Kn= 130 P=0.002	5	As=Oit	57 in /4	
fanin = 0.0033		#608"	Vert IF	i
	8 (0.66).	# 500	Vert DE	
The same and the s	LIF	41/017	Hotel El	<u>-</u>
DHSE SZABC	- 40 / a	#4612	70(1 2	' I
Loads Top Slub DL :	= 150psp	P	X1.4 = 2	10
	,			
Walls (ZX20.5+20.75 ZZ.75 X ZO.5	1 60 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<i>,</i>	41.7 = 51	10
2275 (2X20.57E0.13	1×10,200150	= 7020 00	111/-20	1
64.15 X 20.5		-04-7.	X117 - 28	7
A = 19.50			. 100	タメルゴート
- 1- m = 0.90		Z.	1= 1305	05#
B = 21.75	•	_	,	
MA = 1.31 X0.045X 19.5	2 = 77 1	14/5	1= 16-3-	/=/2
00.020 1 1 7 5 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	22.4	TE F	= 0.144	/
MB=0.029X/13/X21.752				
Kng = 156, Pa = 0.0031	0 .	20023 .	A alla	. 2
The state of the s	min	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	73 = 0, 48.	in
KnB = 125, B = 0.0024		7	508 TOP	EN
16. 1 B		7	5 e/2 Bo	H. FW-
Check Bouyancy:	•			
hw = top stab = 2-017 walk = 9-218	12/2/	11 01 1.11		
Base - 9-21	= 12-82	Upliff	= 62,4% [2	279
7/- 7/1/			792p	s f 1/
DL = 245kb = 300	•-		/ /	y "
12" walls, = 202		•	-	
18" Base-5/ab = 225	_	/ '		·
645psf				
			<u> </u>	
		•		

-33

	C /7	YOF HO	ouston	3904c JOB NO.01
CTE ENGINEERS		5 3 Pul	mps	10,
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	SUBJECT	11-2-9	300 GPM/E	11-7-94
(a) 1/2" [7 1]	DESIGNED	DATE	CHECKED	DATE
Bow Want wind le	Side	5/	_	
Consider 1.0" Flag three Boaryant whof Lea (2x20.5+24.	75/X//	7×0.060 =	= 46,2k.	400
5 /// c//r/	, y	ere en en	20.5 × 22.15	= 100ps
- 00pt - 0751100	/ - 74	13 657	1 - 1 7am	PSFI
for F.S. against boom	yaney	= 1.20	,	. 4
$\Delta D = 1.2 \times 1.92 - 74$	(5)= 20	15 ps. f 1		. 00
V Extend base 5/ab 240	beyo	und 1-4	thick.	walls
Extend base 5/ab 240 Soil wf = (2x20.5+27.58)x 14"wall = (2x20.5+28.		106 = -1	5×23.42 2	0/psf.
7-7 00-00 -/ 2 ×2015+251	42189.	LX1,33XB	0= /18.2k	= 246p:
ZWDL = 300. 246.			60150X 63.72	2 /
225. 201.	FG z	972	- / - 9	
11/ 972 psf	1	792	-1120	
All: Top Slab W/o Beams:			•	
1 = 21-9" (max) 2/ce W= 24" 5/a6.			0	
The W= 24" 3lab.	= <i>3</i>	oo psf	0×1.4=4	120
22	- 3 - 7 - 7 - 7 - 7	00 054	X17 = 57	0
MDL = 0.30x 21.75/8 = 1	W = 60 1-7 7 /k/	opsf	Wh=9.	30 ps#
My = 03 = 12/2021	1. 1 " 7 ti 	X X / O X	1.3 = 23.	p 16/4.
MIL = 0.30 x 2/175 /8 = /				1612
1 Ampach	-	And A	75 -05.7	14
d= 21 F= 0-441 Fm=	177	FACTOR	78.1	he/fe
P	0.003	<u>3</u>	1101	11.
#3=	0.8 /m	, = <u>#70</u>	8 Boll to	parallel to
		45 R	tch opnige	pinot?
			U WILL IN	

C177 PROJECT	OF HOUS	TON, The	3904-00 JOB NO.0101
STD P.S.	- 3 Pump. 5300 G	5-2000- PM EA.	SHEET
NMP DESIGNED	11-2-94 DATE	JAM	11-7-94 DATE

```
TOP SLAB! BEAMS BETWEEN HATCHES:
                    bxt = 11''x24''
bxt = 16''x24. \quad d = 20''
l = 5 - 02 = 7 - 06'' \quad F = 0400 \times 1.33 = 0.532
2 - 0 = 7 - 06'' \quad \times 0.92 = 0.368
                W = DL & 300 psf x 1.33 = 400 × 1.4 = 560 plf.

LL & 300 psf x 3.58 = 1674 × 1.7 = 1826 m, I

M = 2.39 \times 7.04 / 8 = 14.8 / k \times 1.3 \cdot 19.2 / k

V_{u}^{2} = 2.38 \times 5.04 / 2 = 6.0 k (4V_{c}) \text{ or } 1.2 + 20.8 = 22.60
       b=11" 2 0.85×2 \4000 × 16×20 = 34.4k
      F=0.368, Pm = 62 /min = 0.0033
                                    A3 = 1,06 in 2 #8 T & BOTT X 9-0 Lg. #3 17 C 8" STIRRUPS.
Value Pad:
A = 15,1
                                                                 Wot 150 psf 175
WLL = 150 psf 255
W: 300 psf Wy 430 p
                                          m= 0.81.
                 B = 18-6"
         Ma = 0.06 1 x 0. 43 x 15 = 5.9 14/4
Ma = 0.023 x 0.43 x 18.5 = 3.4 14/4
                                                                 d=12-3-1=81
                                                                  F= 0.064
         VA = 0.71 × 15 × 0.43 = 2.29 4 A
0.30 = 1.64/A-
                                                               A= 0.32 cm/ A
   Gr. Wall 1.0 x 2.5 x 0.150 = 0.38
                                                                    #5012 BoH EW
      forming 1.98 ksf 3.00 ksf allowolde 4508 Top Eco-
```

DWGS. E2501 thru E2504

	· 	- *	
HOUSTON TX	STOS SSC Pum	3921-00 JOB NO. OIOI	
3 RIMES @	2000-5300 W PROFILE - S	SHEET 7	
CEO	11/14/95 DATE	CHECKED	11-21-95 DATE

VALVE VAULT 1 21-2"XZ4-9"X /3-0" W/ Z-0" Woulds

- DESIGN FOR CRITICAL BEAM - B-2

L= 20'-9"
$$V = 175 \text{ psf } * \left(\frac{3.0' + 4.5'}{2}\right) = 656 \text{ plf}$$

BEAM WT SAY =
$$\frac{44}{700}$$
 P/f

$$M = \frac{w L^2}{8} = \frac{.7 * 20.75^2}{8} = 37.7 \text{ /k}$$

$$\Delta_{\text{approx}} = \frac{0.98 \times 14.53}{28} = 0.51 = \frac{1}{488}$$

L= 20.75

SINGLE PLATE SHEAR CONNECTION, TBL X-A PG 4-54

36" R × 6" × 6" W/ 13/16 × 17/8" LONG GLUTTED HOLES

V = 82 k > V=727 k

FOR 2-34" & A325 PORTS

(STREZ)
$$V_{allow} = 8.2^k > V = 7.27^k$$

REF. PCI 3º Ev. Tol 620.7

(a.v. Vu= 7.27 k * 1.7 = 12.4 k << \$\psi V_c = 12.2 k / srup 2-3/4" Stups = 24.4 k

WALL FACE PL= 3/8" X 6" X 8" W 2-3/4" \$ 6" LONG STURS

ENGINEERS
CONSOER TOWNSEND ENVIRODYNE ENGINEERS INC

HOUSTON,	•	Gros		3921-00 JOB NO.0101
3 RUMPS SUBJECT L	0 2 OW 8	000-530 ROFILE -	O GPM SECURED	2 of 7 SHEET
CEO		II-14-95 ate	CHECKED	11-21-95 DATE

VALVE VAULT

$$\Delta_{\text{approx}} = \frac{0.70 \times 20.6}{42} = 0.34" = L$$

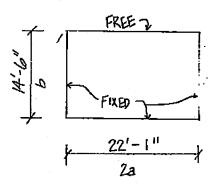
SINGLE PLATE SHEAR CONNECTION TOL X-B PG 4-54 36" PL × 6×9 W/ 13/16×17/8 LONG SLOTTED HOLES FOR 3-34" + A325 BOLTS T/wall 1 33

 $V_{\text{allow}} = 16.3^k > V = 10.3^k$ (SIEEL

REF: PCI 3º ED. TBL 620.7 (COVC)

 $V_u = 10.3 \times 1.7 = 17.5^k \ll \Phi V_c = 3 \times 12.2 = 36.6^k$

WALL FACE P= 3/8" × 6×9 W 3-3/4" + × 6" LONG STUDS


CTE ENGINEERS
TINGUNEUS
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.

HOUSTON, TX STDS			3921-00
PROJECT			JOB NO.0101
3 PUMPS @ 2000-5300 GPM SUBJECT LOW PROFILE-SECUPED			3 of 7
CEO	11-14-95	CHECKED	11-27-95
DESIGNED	DATE		DATE

PIT WALLS

REF: BOR, EM No 27

END PANEL = 22-1" x 14'-6"

$$\frac{3}{6} = \frac{22.08}{2 \times 14.5} = 0.75$$

Rb2= a1 (4.5)2= 21.03 K PB 62 - 1.45 (4.5)2 = 304.9 k PBb = 1.45 (4.5) = 21.02 1k

X1.7 = MUHORE = 28.9/16

$$M_{y}^{-} = (0.1212 + 21.03) + (0.0584 + 304.9) = 20.35$$

インス

= 8.3 1/2 הוא

Fu = 0.182

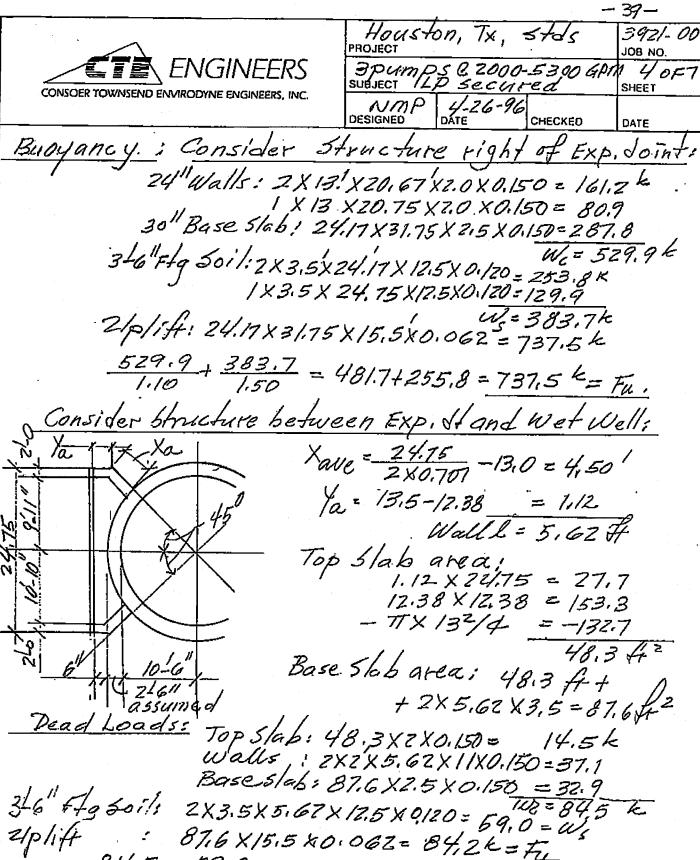
FH= 0,156

$$K_{H}^{+} = Mu/F_{H} = 90 \quad \ell_{H}^{+} = 0.0017 \quad A_{SAIN}^{+} - \ell_{H}bd_{H} \times 4/3 = 0.53 \quad \#6e \quad 14 \text{ H, 1F}$$

$$K_{H}^{-} = 185 \quad \ell_{H}^{-} = 0.0035 \quad A_{SH}^{-} = 0.58 \quad \#6e \quad 7^{11} \text{ HOF e}$$

$$(0.0047) \quad K_{V}^{+} = Mu/F_{V} = 46 \quad \ell_{V}^{+} = 0.00.13 \quad A_{SVAIN}^{+} \quad \ell_{V}^{+} \Rightarrow b \times d_{V} = 0.53 \quad \#6e \quad 14^{11} \text{ Vertification}$$

$$K_{V}^{-} = 190 \quad \ell_{V}^{-} = 0.0036 \quad A_{SV}^{-} = 0.58 \quad \#6e \quad 7^{11} \text{ Vertification}$$


$$\ell_{V}^{-} = 190 \quad \ell_{V}^{-} = 0.0036 \quad A_{SV}^{-} = 0.58 \quad \#6e \quad 7^{11} \text{ Vertification}$$

$$\ell_{V}^{-} = 190 \quad \ell_{V}^{-} = 0.0036 \quad A_{SV}^{-} = 0.58 \quad \#6e \quad 7^{11} \text{ Vertification}$$

$$\ell_{V}^{-} = 190 \quad \ell_{V}^{-} = 0.0036 \quad A_{SV}^{-} = 0.58 \quad \#6e \quad 7^{11} \text{ Vertification}$$

$$\ell_{V}^{-} = 190 \quad \ell_{V}^{-} = 0.0033 \quad A_{V}^{-} = 0.53 \quad \#6e \quad 7^{11} \text{ Vertification}$$

Pmm = 0.0033

84.6 + 59.0 = 76.8 + 39.3 = 116.1k > Fu

ENGINEERS
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.

Hauston, TX STDS			3921-00
PROJECT			JOB NO. 1010
3 RUMPS @ 2000-5300 GPM			5-F7
SUBJECT LOW PROFILE - SECURED			SHEET
CEO	11-16-95	CHECKED	11-27-95
DESIGNED	DATE		DATE

BRACKET FROM WET WELL WALL:

CONSIDER 5' WIDE BASE GLAB & 5'-0" OF WALLS FROM VAULT SUPPORTED ON TO BRACKET.

$$L_{Max} = (12.5' - 12.5 \cos 45) + 1.0' = 4.66'$$

$$M_{AVE} = 0.375 * \frac{2.03^2}{2} = 1.50^{1/4}$$
 $1.875 * 2.83 = 5.31$
 $6.81^{1/4}$

$$M_{\text{MAX}} = 0.375 \times 4.66^{3}/2 = 4.07 \, ^{1}/4$$
 $1.875 \times 4.66 = 8.74 \, ^{1}/4$

$$M_{VL} = 17.29 * 4.6 = 79.5 \%$$

 $2.6 * 46^{2}/2 = 27.5 \%$

Houston, Tx. Stds.			3971,00 JOB NO.0191
3 Pumps SUBJECT LO	SHEET 7		
NMP DESIGNED	11-28-95 DATE 5-3-96	CHECKED	DATE

Ref: PCA - "Samplified Design", Shear Wall, pg 6-13. Mu,= 1.4×107 = 150160 Muz=1.7 x 382.7=6511/2 Controls

ØMn= Φ[0.5 Asy fy lw(1+ Pa)(1- fw)] where \$=0.9

Ast = #6012EF = 0.44XZX 13 = 11.44 in lw= 13×12=156 To = 24, wall thickness Pos

C = W+X Lw ZW+0.85B, = 0.046 2x0.046+0.722 = 0.057

where d=0 for Pu=01 = 11.44 260 156 x24x4.

\$Mn=0.90 X0.5X11.44X60X156 X0.94/12

Net 2/p/ift = 15.5 x 0.0624 = 0.967 ksf - Hinged (thru dwls). $A\omega |s\rangle$ = 0.375 Ref: BOR EM. $\phi = 0.692$ ksf. |9-4'''| |5b| = 11.4 $|a|_{b} = 0.57$ |6.5| |6| = 221. $|a|_{b} = 0.57$ |6.75|Mx = 0,0695 x 221,=15.4/k Mux = 26,2/k m+=0.0263x221.=5.8 Myx= 9,9 Muy= 33.7 Muy= 1719.1k My = 0.0898 x 221.= 19.8 mit=0.0473x221.=10.51k Amin = 28-3-2-23 Amin = 0.0018 Knx = 50 at wall - Both

	nTx, st.		3921-00 1010,010
3 Pumbs	at 2000-	5300GPM	7077 SHEET
NMP DESIGNED	11-28-95 DATE 5-3-96	CHECKED	DATE

Value Pit- Lide walls: Ref: BOR, EM, No. 27 a/6= 19/14,5=1.31 = 1.00 -100 psf \$6=0.1×14.5=1.5
\$6^2=0.1×14.5=21. Bb=1.45×14.5=21. 1450=B B62-1.45x14.5=305 M=0.2949x21+.0662x305 = 26.4/4/4 Mux = 44.9 14/4 M=0.0324x2/+0.0077x305 = 3.0 = 5.1 * M= 0.2949 x 21 +0.1157 x 305 = 41.5/k Muy = 70.5 14 G. = 10.0 14/4 Thy=0.0324x240.0172x305=5.916 t=24" dy=24-32-2"=20.0 F=0.40 dV = 24 - 21 - 2 = 21.0'' F = 0.44 $K_{0} = 112, \quad R_{0} = 0.0021 \quad R_{0} = 0.50 \, in/R_{0} \quad \#607'' e \, Inters,$ $K_{0} = 13, \quad R_{0} = 0.0015 \quad R_{0} = 0.36 \, in/R_{0} \quad \#6014 \, Cont.$ $K_{0} = 160 \quad R_{0} = 0.0030 \quad R_{0} = 0.76 \, in/R_{0} \quad \#60.7'' \, Vert, \, dw/s$ $K_{0} = 160 \quad R_{0} = 0.0030 \quad R_{0} = 0.76 \, in/R_{0} \quad \#60.7'' \, Vert, \, dw/s$ $K_{0} = 160 \quad R_{0} = 0.0030 \quad R_{0} = 0.76 \, in/R_{0} \quad \#60.7'' \, Vert, \, dw/s$ $K_{0} = 160 \quad R_{0} = 0.0030 \quad R_{0} = 0.76 \, in/R_{0} \quad \#60.7'' \, Vert, \, dw/s$ $K_{0} = 160 \quad R_{0} = 0.0030 \quad R_{0} = 0.38 \, in/R_{0} \quad \#60.7'' \, Vert, \, dw/s$ - Use this. (*) Consider Vert. Edges Hinged: 0/6= 19 2×14.5 = 0.66

My = 0.2135×21+0.087/×305=31.014/4 Mu=52.816/4 Kny=120 P=0.0023 A= 0.58in /4 #609 40F dw/s.

PROJECT LP-SSC- Pump STN- FZ JOB NO. 010
CTE ENGINEERS Y Pumps- 500-2500 GPM SUBJECT SECURE SITE PUMPS SHEET
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC. SUBJECT SECURE SIFE PUMP 4 SHEET 1
DESIGNED DATE CHECKED DATE
VALUE VAULT: 15-0×25-6 × 8-8" Walls, t= 12".
Gratury - FRP Wt. = 25 PSF.
Live Load = 150 psc.
Support Beams: W= 175 pst Beam B1- L = 2346"
Beaux B1 - L = 23461
W = 175 (4.33+3.17) . 656 plf
Wt. of Bin = 44 4 (assumed).
M= 0.7 x 23.5 /p = 48.316 plf
V=0.78.22.21.22.6
W=16.4k WIOX39 Lu=23.5
Me=63/c
Doub 108×16.4 = 0.77 in (2012×26 liv=12)
2/30 = 100 = 3/30 Provide 3-34" \$80/1/Conu
peace of the
w: 175 (3.17+2.75) = 518 PIF
01. of Bm = 32
M= 0.55 X23.5 : 38 th 2/se. Provide 2-34 6 BoH
the same and the s
, <u> </u>
AWB = 5x12.93 x (23.5) × 1728 1.57 = 100 OK
W10×33 lu = 23.5'
Aug = 5×12.93 (23.5×12)3 = 0.77 11 mg - 43 k
284 × 24×10° × 170 - 0.17 - 1
366

	Houston Tx Stolg,	3921-00 JOB NO.0101
CTE ENGINEERS	4 Pumps - 800-2500 GPM	SHEET 4
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	MMP 12-4-95 CHECKED	DATE
VALVE PIT WALLS:	a/6 = 24.5 2×9.67 = 1,26	1
Back Wall;	• •	
	9.67 100ps// 462. 86=	9,4
# # # # # # # # # # # # # # # # # # #	2=100 7 B= 167	* / /
Mx = 0.2959 x 9.4 + 0.075		16.31K/A
MX = 0.0937 x 9.4 + 0.0257.	× 90.4= 3.21/4 = 5	5.4
my=0.2776×9.4+0.1054	x90.4 = 12.1 = 20	0.714
My = 0.0206 × 9.4 + 0.0127		,z
t= 12"wall, 44=8.5",	f=0.07. ,=0.09	
Ky = 233, P = 0.00.45 Ky = 17, Pm, 0.0033	A3 = 0.46 m/4 #50.	12 HOF, A Corre
KV = 230 P=0.0044 KV = 24 Pmin = 0.0033		6"VOF dnys
1 14 J	6 = 14/9,67 = 1.45 > 2/se	=1.00-
B=7,01)	p,62=9.4	
Fixed \$=100) \$2	Bb= 9.4 = 967pg Bb= 90.4	

1				
	HOUSTO	W, TX	5725	3921-00
CTE ENGINEERS	4 Pumps- SUBJECT	500-26	600GPM	JOB NO. 0101 SOF4
CONSOER TOWNSEND ENVIRODYNE ENGINEERS. INC.	NMP DESIGNED	12.4-9: DATE	CHECKED	DATE
Mx = 0.2949 X9.4 + 0.064	52×90.4=	8.8 lk/1	4. Mu:1	4.914/4
mt = 0.0324x9.4+0.0077	×90.4 = 1	0	<i>= /,</i>	7
My = 0.2949 x 9.4 + 0.1157)	(90.4 = 19)	7,2	Mx = 24 = 3,	1,2 K/A 2/k/A-
15= 2/3: P= 0.0041	A34 2 0:	43 #5	Telzhof e	Carper
K# = 24. Point 0.0033	= 0.	34	#SEIZ HE	F -
	Asv = 0.5	59 s	45e6°0F	DWLS
Kut = 36. Pmin 0.0033	= 0.32		SOIZ VEF	
Base 5/abs DEAD LOADS: 12 walls 16" Base =	,	•		
DEAD LOADS: 12 walls	2×14,5×1	8.67×0	150 : 37.7	, Ke
16" Base =	1/2315 X	8.61 × 125.5 X	0.150=30.6	,
2.0 th 501/01 . 25	V2 V 16 EV.	40 1	142	· 3 K
2.0 Ftg. Soil wt. 27	2 × 23.5 × 1	10,0 XO	106 = 39.	<i>G</i> 2 ,
2/1/4 = 14.5x 25.5x4	0/20.062	4= 2=	240. 30.7 KA	TK &
F. Sagamol Elpliff	= 240.1	230.	21.04	
Resisting force requ	ired = 1,1	25X23	0.7= 288.	46
Or Force transfered by Wall-Brack			7 1./27	/ 1
· · · · · · · · · · · · · · · · · · ·		4.26	Fach we	all-
Assume wetwell wall f=	2/011	<u>Z</u> _	77	
Wall backet Lews MBr = 24,2×5,53'=1	ith = J l	3.071	2.5 -12.5	5 = <u>5,53</u>
Mr. = 1,74/31/ - 370	lk		1	
Wallbracket to 12" Ref: PCA "Sumplified"	W/#6012	EFEW	Reinf.	
OM-AT-CA	Design "	Shea	- walls p	96-13.
\$ Mn = \$ [0.5 Az fy]	W(1+ Fu. Asto	<u>r</u>) (1	- C)]	

_=:..

	<u> </u>
	HOUSTON, TX STDS 3921-80 PROJECT JOB NO. DID!
CANCER TOWNSEARD FAMILION OF FAMILIANTS	4 Pumps - 500-2500 GM 40F4 SUBJECT EA. SHEET
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	NMP 12-4-95 CHECKED DATE
Pu=0	
Pa=0 A3t = 0.44 XZX 8 = 7.00	4ñi -
Lew = 8!8" = 104" W = Ast fs = 7.04 X	60
w = Ast fis = 7.04 X	x4 =0.085
Lw 2w+0.85B,	B=0.85 for f= 4000ps
0.085 2 0.0	95
\$M. = 0.90T 0.5×7.04×60	12/04×0.905 = 1490 1k > Mu= 228 k
	1-1490 MILLE 220
BASE SLAB! Net ZITH	= 0.062 × 10'- 1,33 × 0,150 = 0,4/20 kg
$a/b = \frac{24}{2x}$	15 = 0.88
1 1 pt = 1	0.42×14= 5.88
Hinged PE= 0 (Dus/s) - P62=0	7.42 × 142= 82.3
1/1/1/4/ Mx = 0.0	680× 82.3 = 5,6 " Ma=9,6 K
	249 × 82.3 = 2.0 " = 3.4
mt = 0.0	0996×82,3 = 8.2 = 13.9 le 0540×82,3 = 4,4 = 7.6
t=16 d=16-2-1=1=1; d=16-3-1-1=1;	2.5 F=0./36
W-73 P-10	
Ky = 105 (Gro 55 Ale	018 Az=0.35 in 2/f #50 6 Duls.
KJ =48	7432120177 113C/2 FW,
V= 0.3922X5.88 = 2.314A	1 Vu.3.92k/4 1 4508 EW
= 0.2735×5.88 = 1.6 k/4	1 V = 2.726/2 M 0 21/1/2
Km=53 Pm = 0,0018 +	In=0.35 in 2/f. # 60/2 DW/s from Wet

34041-CITY OF HOUSTON ДСВ №0, СУВОС PROJECT STD. LIFT STATION - 4 PUMPS SUBJECT 500 - 2500 GPN: Ea, SHEET WMP DESIGNED CHECKIED DATE

A3 = 0.85 min /f

WET WELL:

TOP SLAB = LL: Equiv. Equip. Or min = 300 psf.

(No truck load Considered)
DL: 24 thick stab W/o Beams = 300 psf.

Lmax = 2 x 10,5 = 1,892 +2,0 = 22,66 H Mol = 0.300x 22.66/8 = 19.31k, Musi 1.4x1.3x19.3=35. MLL = 19.31k + + M. =1.7x1.2x10 = 1/2 Mur = 1.7 × 1.3 × 19.3 = 42,6 44 Additional Moment due to J=24-2-1-21.5 opmy: En. Side of opag-

F = 0.462 Am= 42.6×4.54 = 96.716 1 = 0,0032 12 = 0,0033. Pm = 168

Consider distribution over

2 Width AMu= 48.4/4/

IMm= 77.7+48.4 = 126,114/4

Bm= 273 P= 0.0053

A3 = 1,36 in 1/4

#80 8 Bolf (1-19mg/4). 1#8 TEB Addl. @ Oping . (ZA= 1.58in) #508"T&Both Temp Reinf.

VALVE VAULT:

Top StAB:

LL: Equip-Equiv. Zond or = 300 pcf

(No truck Load Considered).

DL: 24" HARE Stab = 300 psf = 300 psf.

Lmax = 24-6" -max = 17-0 Additional Load from opings 11:300 psf x Z/3,37'distribut = 178 Say 200psf. Wu = 1.4x1.3x300 = 546 psf } = 1650 psf. 17x1.3x500 = 1104 psf } = 1650 psf.

	PROJECT			3904-00 JOB NO.0100
-	STD. LIFT STATION - 4 EUMPS SUBJECT 500-2500 GPAN CO.			Z SHEET
	UTMP DESIGNED	Z-/0-95 DATE	CHECK ED	DATE

Mu= 1.65 x24,5/8 = 124 1/4 Vuz= 1.65 x (24.5 - 0.5-1.78)=16.5 4 Vul = 16.5 x 4.65 = 20.4 6/4 < \$V = 2X0.85 4006 x 12 XZ15 Km = 268 P = 0.0052 #808 BoH. Azz 1.34/m2/f-1#8 T. R. BoH add at

#508 TRBoH. temp Rem WALLS: Consider flood condition with soil saturated to full height, w/ equiv. Lateral pressure of Bops?

100 psf = 17

p = 0.14

80psf = Q = 100+714 x 7.67 = 3.12 k M= 3.12 x 7.67 = 3.1 1/4 Wall Vect. Span= 6-8" V= 0.35 X 3.12 = 1.12 4/ft Mn=1.7x1.3x3.1 = 6.9 12/4 d= 12"-2-2=9.5" F=0.09 Km = 77 | fm = 0.00334-2/se e=0.0014 mm Az = 0.38 ne /4 #508" Vert EF. #4012 Horiz. Et.

	PROJECT OF HOUSTON	3904.00 JOB NO.0100
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	STD LIFT STN- 4 PUMPS SUBJECT 500-2500 GPIN EA.	
COMOCA TOWNS ENVIRONME ENGINEERS, INC.	NMP 2-10-95 DESIGNED DATE : CHECKED	DATE
VALUE VAULT BASE SLAB!		
Loads - Top Slab		. ,
D/X - [25,5 X 17.5]	-4×4.04×3,83) -5×17.5	258 psf
walls		300 8
DL: (25.5+2X/0	6.5) × 6.67 × 1×0.150 =	132 11
5011 on 1-6"	25.8×17.5	
DL. 28.5X/15.X	9.17 x 60 pof (= 52.4 = = 25.5×7.5	117 h
ZX17.5X1.5X	9.17 & 60 1 5 25.5×19.5	007-1
A = 17.5 B = 25.5' A/B=	Un= 1220psf (15VUZgf=0	ا عاده ا
5/A = /	0.69 Two-way 5/ab, 1,46 x 1.5 PCA-Rect.	Tanks
1000 = 0.807 × 17.5	0.747	۴,
M= 78×0.247 = 19	1.3 14/A × 1.51× 1.3 = 37,4	9:10/4
MB/L 43×0,247 = 10.	6 14/A × 1.51×1.3 = 37.9	ikla-
Km2 = 224, P= 000	42 d=16-2-1 F=0/69	
A320.66in2 #6	OB TOP EW.	
Bourancy Check	esiteb eu.	
hw = Top 3/ab = 2-0" Wall ht, = 6-8"		258 pol
Wall ht = 6-8" Base 3/ab = 1.6	walks =	132 "
2/p/14 = 6214x10.17 = 635 =		00
	• • •	0.7755
F.s. against floatation	635 = 1.11	
174 6-0 Wide Leage (29.5+2X/25)X2X9.17X	60 = 71. k = 159	
Try 2:0" uside Leage (29.5+2×17.5)×2×9.17×12 ZDL=749psf =5.2	749/635 = 1.18 × 1.20.	

 			-50-
E174	OF HO	USTON	3904-00
PROJECT			JOB NO.0/63
SUBJECT 50	7 57A710N 70 - 2500	-4PUMPS GPM EA	SHEET 4
NMP	2-10-95	1	0.1261
DESIGNED	DATE	CHECKED	DATE

VALUE PAD: A = 10.0 (±) B/A = 2.00

Loads: 12 5/a6 = 150 psf x1.7 = 510 W= 450psf 770f 9a2 = 0.720×100

MA = 0.072 × 100 = 7,2 1/4 M₈ = 0.072 × 38 = 2.716/4 = 0.072 K_n = 100. Pmin = 0.0033. F = 0.072 A₃ = 0.34 in /4 + 508 TRB EN. Vamor Vare = 3×2.3 = 1.536/4 8 wide G- wall

Soil Fs = 2.3 ksf (3.00 ksf allowable.

3921-00 HOUSTON TX STDS PROJECT LP, S'SE PUMP STN-GZ JOB NO. 0107 3 WET & ZDRY WEATHER PUMPS 1059 SUBJECT SECURED SITE SHEET 12-4-95 NMP DESIGNED DATE

21-2"x25-9x13-0 walls += 24". VALUE PIT NO. 1

SUPPORT BEAMS!

Beam Bl. L = 24 5 "
21 911

W = 175 (3.17 + 5.0) = 715 plf Bm, Wf = 35 " $M = 0.75 \times 21.75 = 44.3 \text{ k}$ $V = 0.75 \times 21.75 = 8.2 \text{ k} = R$

W=0.75x21.75 = 16.36 7 WIOX33 X

 $\Delta = \frac{1.19 \times 16.3}{25} = 0.78 = \frac{1}{336}$ $U/se, \omega/2-34 & golf.$ $U/se, \omega/2-34 & golf.$ Beam BZ 4=21-9"

 $\frac{2}{42^{-2/-9''}}$ $w = \frac{175}{5.0+5.5} = \frac{918}{5.0} = \frac{8}{7} = \frac{8.2}{6.2} = \frac{32}{10.95 \times 2/.75} = \frac{32}{56.2} = \frac{32}{56$

A = 0.99 x 20.66 = 0.55 = 1

38" PL, 516" Weld R=16,36.

	HOUSTON, TX , STDS	397/-00 JOB NO.010/
ENGINEERS ENGINEERS	3 WET & Z. DRY WEATHER Pum, SUBJECT SECHED 51TE	
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	NMP 12-4-95 DESIGNED DATE 2-3-95 CHECKED	DATE
VALVE PIT WALLS: 2016	"x 24-5 x 13-0 walls, 24-1/	Tickness
BACKWALL: Free 7	a/6 = 23.08/2 ×14.5 = 0.	79
1=146 xxcd	poper p. 62 = 21.0 \$6 = 21.0	
2a = 23-1" p=100-1	\$ 67=305.0 \$=1450psf	
Mx = 0.1788xz1. + 0.0433x. mt = 0.0807xz1 + 0.0214x	743 - 21G .	8 lk/fr
m=0.1212 x21 + 0.0584x3	305 = 20,4 = 34	6
my=0.0242X21+0.0139X		
t=24" dy=20.0" Fit dv=21.0" to	,= 0.40 = 0.44	
		cogner.
	43=0,40 m/H #6E	14 HEF.
Kmy = 18 Pr = 0.00/3 X/3=0.0	00.17. As=0.40in/ff #60	OF. 14 VEF
SIDE WALL: 0/6= 19.33	114.5=1.33 21.00-	Ilex.
(Hinged) Mt = 0.2949	1421+0.0662×305=26.4; 14x21+0.0077×305=3.0	Mu= 44.8 = 5.1
Jum 7 1- (24) M- 10,7914	1421+ 10 1157X 305+41.5	= 70.5 = 10.0
t= 24" dy = 20.0" Fr=0.40	7 706/1 1010-	
du=21.0" Fx =0.44	A	Compare
Knx = 112. f4 = 0.002/X/3 Knx = 25 f4=fy=0.00/3X/3 Kny = 160 fy=0.0030X/3	A3 = 0.40 In 2 # 6014 EFE	W
Kny = 160 P=0,0030X12 1	Asi 0.72 in #607 VOF	/w/s. (*).

		- <i>53</i>
	HOUSTON, To STDS	3921-00 JOB NO.0/1
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	3 WET & 2DRY WEATHER PUMPS	3 OF 9 SHEET
	NMP 12-6-95 DESIGNED DATE 4-30-94 CHECKED	DATE
(*) Consider Vertical Edges Mu = 0.2/35X2/+0.087/X3	hinged = 016 = 19.33 =0	2,67
JMAN		/ /c
Engmax P=0.0023X/3	A3=0.73in2. #607 VOI	edwls.
Base Slab: Consider Struc	ture right of trop, soi	nt:
Base Slab: Consider Structure Deadloads; 24"Wall	15: 2X20.67X13:0X2X0.160=	161.26
2-6" Borse slab:	2 <i>4.67X 33,75 X 2.5X O.15</i> D =	312.2
Consider 4-0 Footing	projection Wa=3	558.ZE
5011. Wt- 2X24.6	7X (2.5 X 4.0 X 0.120 = 296. X 12.5 X 4.0 X 0.120 = 154.	0k 5
2/pliff: 24.67×33.75×15	5.5 XO. 06Z=800.1 K	5
	7.5+300.3= 807.8 > Fu	
Eu = 1008.7 = 1,2	6 0 k	
Consider structure between	een Exp. Hand Wet W	11:
X	0 = (11.92+13.83) - 15.0 = 3.22	? /
	a= 15.5-12.88 = 2.62 owe, Wall L = 5.84	- F
701	o slab area = 2.62 x 25.75	
	12.87 × /2.88 = - 77 × 15²/4 =	-176.7
Ba	- 3/06 20 1 - 1 - 1	56.6 ft
Dond	10ads: 2X5,84X4=	103.34
1/2.6 1.6 24,17	OP 3/961,0616 XCX01/50	= 17,00
5011:30	50,50,51,66,103,3×1.5×1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	W-75.04
2/p/ift = 103.3×15.5×0.	062 = 99,3k W5=70,1	1k

CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.

HOUSTON, TX STDS 3921-00
PROJECT JOB NO.0/0/
3 Wet & 2 Dry Weather tumps 4 0F9
SUBJECT SHEET

STDS JOB NO.0/0/
DESIGNED DATE 4-3096 CHECKED DATE

 $\frac{ZW_{c}}{1.10} + \frac{ZW_{d}}{1.50} = \frac{(558.2+75.0)}{1.10} + \frac{(450.5+70.1)}{1.50}$ = 575.6 + 347.1 = 922.7 = 275.2 + 200.1+99.3 = 899.4 $\overline{LW} = \frac{1153.8}{25u} = 1.28$ $\overline{LW} = \frac{1153.8}{899.4} = 1.28$

I Shear Capacity of Dwl-bars in Base stab: $C|E|^2 + k$. $\phi V_c = 25.85 k$ $OR \quad \phi V_c = \phi V_c' Cw C_t C_c$ $\phi V_c' = 24.52 k$ $C_u = 1.0$ $C_t = 1.0$ $C_$

HOUSTO PROJECT	N, Tx, 5	rds	3921-00- JOB NOO/0/
SUBJECT	ZDRYWE	ATHER Pum	
DESIGNED	12-6-95 DATE 5-3-96	CHECKED	DATE

Base Slab

016 = 23.08 = 0.60 (0.75 0.625 Net zipliff = 0.062×15.5 = 0.961 = Hinged $\frac{70.5}{1.23-1}$ $\frac{70.586}{1.33}$ Fixed $\frac{5}{1.33}$ $\frac{5}{1.33}$

M=0.0695 x219. =15.2 , Mux = 25.816 111x = 0.0274 x 219. = 6.0 = 10.2 M= 0.0898 x 219. = 19.7 = 33.5 M= 0.0473 x 219. = 10.4 = 17.7 lb VHange (max) mx = 0.0274 x 219. = 6.0

				-50
	PROJECT LP	ON TX S	STN-GZ	3921-00 JOB NO. 0101
i	3We++2 SUBJECT	Dry Wea	thes Rump.	6 0F 9 SHEET
	DESIGNED	12-11-95	CHECKED	DATE

VALUE PIT NO.2: 14-0x18-10x8-8 Walls 1-0"thick Grating FRP Wt. = 25 psf Live Load = 150 psf W= 175 psf Support beam: W = 175 (4,33+2,25) = 575 plf Bm wf = 25 // 600 pf. L= 16-10" 1 = 16-10 M = 0.6 × 16.83/8 = 21.2 1k V = 0.6 × 8.42 = 5.05 k W8X24 ln=16.83 M - 22.51k $M_{\rm r} = 10.1^{\rm m}$ $M_{\rm r} = 33.5^{\rm m}$ $\Delta = 0.89 \times 10.1 = 0.47^{\rm m} = 426$ $M_{\rm r} = 33.5^{\rm m}$ $M_{\rm r} = 33.5^{\rm m}$ W=10.1 K End wall: Ref: 215 Bureau of Reclamation, EM NO. 27. a/6 = 17.83 - 0.92 21.00 -100pcf \$6=1.0 \$62=9.4 \$6=9.4 \$62=90.4. M= 0.2613×9.4 + 0.0644×90.4= 8.31k/4 M= 0.1008×9.4 + 0.0276×90.4= 3.4 M= = 0.7043× 9.4 + 0.0845×90.4= 9.6 Mu = 14,1/k/f-= 5.9 4/4 = 16.3 Mt-0.0243 x9.4+ 0.0159 x 90.4=1,7 = 2.8

t=12" dy=9.5" Tr=0.09 dy=8.5" FH=0.07

		•		57ー
CTE ENGINEERS CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	HOUSTOPROJECT LP, Wef + Z SUBJECT NMP DESIGNED	N Tx STDS SSC Plant St Dry Weather 12-M-95 DATE CHE	Pumps s	3921-00 OB NO.0101 7 OF 9 HEET
Kny = 181. P = 0.0035 +	743 = 0.001 43 = 0.0035X	39×12485" 0.2 18×17×12 = 0.2 10×9.5 = 0.4 = 0.20	6 # 6 6 # 6	#5@GH #5@12H1: 5@6 DWL 5@12VEF
P1XC43 W-13.30 P2-100	13:967	\$6:1.0 \$6 ² =9.4 \$6=9.4 \$6 ² =90.4		,
M= 0.2949×9.4+0.0662 M= 0.0324×9.4+0.0077 M= 0.2949×9.4+0.1157× M= 0.0324×9.4+0.0172×	x 90.4 = x 90.4 = 1 90.4 = 1 90.4 = 1	8.8 ^{1k} /f N 1.0 3.2 9	tu = 14,9 = 1,7 = 22.6 = 3.2	14/4
Kny = 213. P=0.004/ A3 X Kny = 24. Pmin=0.00/8 A3 X Kny = 250 P=0.00/8 A3 X Kny = 36, P=0.00/8 A3 X Kny = 36, P=0.00/8 A3	0.427n2 0.2612	#50 # #5	268 C 268 HE 268WI 212 VE	f.
Buoyancy Check: Conside Dead Love si Walls 3-0" Ffg; 24" Boses	- 5+mc+ 12×14× 1×16.8 106: 17.0×24.	are, Left 8.67 X 0.150 3 X 8.67 X 0.15 93' X 2 X 0.16	of Exp. = 36.4 50=21.9	St. :
501/:2×3.0×8.17× 1×3.0×8.17× Upliff=17.0×24.83×16 We/1.10 + Ws/1.50=267	17.0 X0.	120 = 100, 120 = 49,5	C=184.	,92

Houston,	Tx STDS	392/.00 JOB NO.0/0/
Wet+Z SUBJECT	Dry weather	SHEET 8 0F 9
DESIGNED DA	-/-96 CHECKE	D DATE

DESIGNED DATE DATE DATE DATE

Consider Structure between Exp, It and Wet Well:

Ya 15.50 - 14.0 = 1.50'

Xa 9.42 - 16.0 = 1.78

Wall R = 3.28'(approx).

Wall R = 3.28'(approx).

Top 3/ab arc: 1.50×18.42 = 27.6

2×1×9.42×15.0 = 141.3

- 71×16²×64 = -142.9

B-se s/ab area = 26.0+ 2×3.78×3.0

= 45.7 A² approx.

24"Top 5/ab: 26×2×0.150 = 7.86

12"walls: 2×3.28×6.67×0.150=6.6

24"Base 3/ab: 45-7×2×0.150 = 13.7

30! Wt: 2×3.0×8.11×3.28×0.120 = 24.16 We=28.16

10! 150 + 150 = 213 + 173.6 = 309.4/6 = 54=309.4

HOUSTO PROJECT LP	NITY STA	DS imp stn:HZ	3921-00 JOB NO 0/0/
3Wet + 22 Subject)ry weather	Pumps	9 of 9 SHEET
DESIGNED	12-14-95 DATE 5-3-96	CHECKED	DATE

Consider Combined bending and shear of dowe is: $Mu = V_u \times a = 0.50' \times 7.37 = 3.69'' \text{lk}$ $f_{SE} = \frac{3.69}{0.7854 \times 0.53} = 37.59 \text{ ks}$ $f_{SU} = \frac{7.37 \times 60}{27.1} = 16.32 \text{ ks}$ $f_{CE} = \sqrt{37.59^2 + 16.32^2} = \frac{40.98 \text{ ks}}{40.98 \text{ ks}} = \frac{60 \text{ ks}}{60 \text{ ks}}$ II Shear Capacity of $\int (6 \times 2.0 \text{ dw}) \text{ in base 5/ab}$: $f_{CE} = 25.85' \text{ dw}$ $f_{CU} = 1.5.2' \text{ dw}$ $f_{CU} = 1.75 = 1.3 \text{ de} = 10.4''$ $f_{CE} = 1.5.2 \text{ d/dw}$ $f_{CE} = 1.75 = 1.3 \text{ de} = 10.4''$ $f_{CE} = 1.75 = 1.3 \text{ de} = 10.4''$ $f_{CE} = 1.75 = 1.3 \text{ de} = 10.4''$ $f_{CE} = 1.75 = 1.3 \text{ de} = 10.4''$ $f_{CE} = 1.75 = 1.3 \text{ de} = 10.4''$ $f_{CE} = 1.75 = 1.3 \text{ de} = 10.4''$ $f_{CE} = 1.75 = 1.3 \text{ de} = 10.4''$ $f_{CE} = 1.75 = 1.3 \text{ de} = 10.4''$ $f_{CE} = 1.75 = 1.3 \text{ de} = 10.4''$ $f_{CE} = 1.75 = 1.3 \text{ de} = 10.4''$ $f_{CE} = 1.75 = 1.3 \text{ de} = 10.4''$ $f_{CE} = 1.75 = 10.3 \text{ de} = 10.3''$ $f_{CE} = 1.75 = 10.3 \text{ de} = 10.3''$ $f_{CE} = 1.75 = 10.3 \text{ de} = 10.3''$ $f_{CE} = 1.75 = 10.3 \text{ de} = 10.3''$ $f_{CE} = 1.75 = 10.3 \text{ de} = 10.3''$ $f_{CE} = 1.75 = 10.3 \text{ de} = 10.3''$ $f_{CE} = 1.75 = 10.3 \text{ de} = 10.3''$ $f_{CE} = 1.75 = 10.3 \text{ de} = 10.3''$ $f_{CE} = 1.75 = 10.3 \text{ de} = 10.3''$ $f_{CE} = 1.75 = 10.3 \text{ de} = 10.3 \text{ de} = 10.3''$ $f_{CE} = 1.75 = 10.3 \text{ de} = 10.3 \text{ de} = 10.3''$ $f_{CE} = 1.75 = 10.3 \text{ de} = 10.3 \text{ de}$

Base 5/ab: $a/b = \frac{17.83}{2 \times 13.5} = 0.66$ Nef $24/i + 10 \times 62.4 = 624$ 20 = 17.83 $4 = 10 \times 62.4 = 624$ $4 = 10 \times 62.4 = 624$ $4 = 10 \times 62.4 = 624$ $4 = 10 \times 62.4 = 624$ Fixed 6 = 13.5 6 = 13.5 6 = 13.5 6 = 13.5 6 = 13.5 1 = 1

		-60-
	CITY OF HOUSTON	3904-00 JOB NO.0101
CONSOER TOWNSEND ENMRODYNE ENGINEERS, INC.	LIFT STN WIO VALVE VAULT SUBJECT ZWET & ZDRY WRRIMPS	12 SHEET
The state of the s	NMP 11-1-94 JAM DESIGNED DATE CHECKED	11-7-94 DATE
WET WELL: TOP SLAB!	(sht. c3,	1)
Band 1: E= 3! 034" } = 3!10"	ick Slab,	
0-94"	luna!	4.45
W = DL ! W = 3001 W = 30ps	PS + Y 3.83 = 1150 p1 + X 4.75 = 143	(4)
W3 = 300 X	2.25' = 675	Just -
/w ₃ LL: 300psfx	2.25' = 675 8.58 = 2574 =	WLL
Mw. Custus X	<i>u</i> /	= 1173, 271
6-10 3-10 W2 3-10, 6 10	.	- 37/, -1531
26/0]]	-6.45× 11.83 = -	- 76.
11 33.5 × 1.7 = 57.0 k 33.	oh)	570K
W/to 16.8 = 23 k x 1.4. 32.2 6.2	2] = 21" (Mujer 7	4/1/2)
V2.89.24 /d	Ve. F = 3.83X0.441.	=1.689
\$Vc=0.85x2 \4000 x46x2	/ Mr. 331- (43	9)
	1-103.94 P= 0.0067 (6 Az= 6.47 in (0.5052
Bow 12: 6=21" F=	11 #8 BoH @ 4	1/2/m.
Bow 12: 6:2.62:31" F=	1.14	72
$L = 7\sqrt{12.5^2 - 5.83^2} +$		
$D_{L}^{2} = 7.62 \times 300 \text{ psf} = 6$ $30 \text{ psf} \times 2.5 = 6$	0.79 } 0.87×1.4 .1.224/4.	
WIL = 300 psf X 5:12 = 1	1.54 x 1.7 = 2,614/4	
M= 2.83x 23.12/2 = 756	k/333) W: 3,83 K/F	,
Bn=228. /2 0,0044	(0.0057) Va= 42.4 Va=	35.74
13-21 (5#BC)	4 Both, PVC = 35 k & TRI.	
7-7-5-7-	- The partie of	

-	,			
	PROJECT 01			3904-00- JOB NO. 0101
			RY Pomps	SHEET /3
	NMH DESIGNED	11-2-94 DATE	JAM CHECKED	11-7-94 DATE

VALUE PADS:

A= 16-1 } = 15-1 | m = A = 0.82

B= 19-5 \ = 18-5"

W= 12" Slab = 150 ps f. x1.4 = 2/0 ps f.

LL. (Notrock) = 150 ps f. x1.7 = 255 ps f. N. 4 = 2/0 ps f.

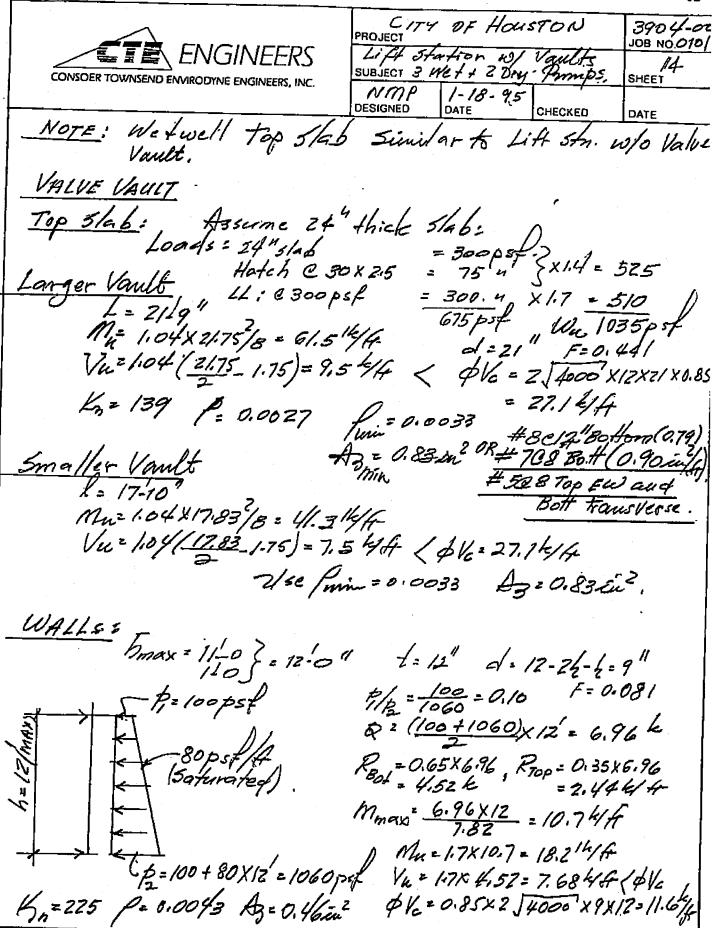
W=300 ps f. Wa=465 ps f.

Mu=0.056 x 0.465 x 15.08 = 6 14/4- Kn=94.

Mu=0.023 x 0.465 x 18.42 = 3.6 14/4.

d= 12-3-1 = 8" F=0.064 Pum: 0.0033

d= 12-4-1=7" | = 0.064 Pum: 0.0033


d= 12-4-1=7" | = 0.069 Arma = 0.3/100.

#50 12 Both. EW.

L-0.465 x 0.71 x 15.08 = 2.49 4/4 (max)

Gr. Wall Loads: platform = 2.49/155 = 1.6/4/4.

Bry passure: 1-99 ksf (30 ksf allow.)

STEN ENGINEERS
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.

•	PROJECT C 174	OF Hous	TON	390400 JOB NO. 0/0/
	L' ft Sto	ortion w/o et + 2 Dry 7	Vaults Dumps	/5 SHEET
	NMP DESIGNED	1-18-95 DATE	CHECKED	DATE

BASE SIAB: Loads: Top Slab DL 300 psf Walls 22.75 20.50' 63.75 x // x 0.180 = 105.2 = 225 psf Consider Water Table to be rup to Finished Grade Des. Engr - Varify for 100 year flood level of Critical. 11-0 } = 13-6" ZIPlift = 62.4x 13.5 = 842 psf 65.75 X/X 12 X 0.06 = 47.34 Weg = 47.3 = 100 pet ZWDL = 850 psf & 2plift=842psf. Soil pressure = DI=850 Des. Eugr-Verifu W= 300 Topsleb x1.d = 420
300 Ll alls X1.7 = 510
225 walls x1.4 = 315 t = 18"base slab d = 18-2-1 = 15" F.O. 25 = 19.35 Kgff A3= 1,295 m/ff # 8@8 Top

		-04-
	PROJECT TY OF HOUSTON	3904-00 JOB NO.0/0
ENGINEERS	Lift Station W/Vaults	16
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	Lift Station W/Vaults SUBJECT 3Wet + Zday Permps	SHEET
	NMP /-18-94 CHECKED	DATE
Consider Base Slab as	Telegrania	
Consider Base Slab as a se b = 21.75'	m=1,00. Hinged all sta	les.
M = 0.036x /39x 2/.	75 = 23.7 K/A	
Kn= 105 /min= 0,0	0033 · Az = 0.59 in -	
	# Telz T.EW	
Descense IS account 1	# 50 17 BoH. Fw	
Assume F.S. agawstapli	94=1,60	
Net upliff = (1.2xd a. Consider base =/=b the wetwell shalf	to resist by Contileur	V Off
the wetwell shalf	2	,,. O, j
Mu= 1.7x D.160x 22.	5/2 = 68,91k/A	
F= 0.225 K= 306	P= 0.000	·
	, A3= 1.08 m2 #808 d	uls.
b. Consider net suplify Si Slab equally	haved by Top slab and	1 base.
: Mu= 34.5 1k/f		
	A	
Bn = 153 Pmin	, _	; D
I de la crease wall this kness	#70/2 Bot. Dw Wet well we	1/s from
/ Ne		
C. Increase wall thickness and Base Stab project	tw=16 base 5/ab = +=	20
and pase slab proje	ctroa 2-011.	
hw = 200 = 15 Zupli	ft = 62.4×15 = 936 psf;	A
DL: TOP S/ab 2	300 psf	a e
Base Slab = 3	300 6 11	
Walls = 20.50 ? = 0	64.42 X 11X1.33 X 150 = 141.4h	1/2 /1
23.42	20.5 x 25. = 294 p	s f -

PROJECT		AOUSTON	3904-00 JOB NO. 0/0/
SUBJECT FO		W/Vacets	DS SHEET
DESIGNED	/- 19- DATE	CHECKED	DATE

Rase Slab

Loads: Top Slab = 300 psf

walls = 186 m

Soil = 107 m

XI.4 = 830

LL. Top Slab = 300 psf x 1.7 = 510

W=893 psf

Consider Two-way Slab, hinged all edges.

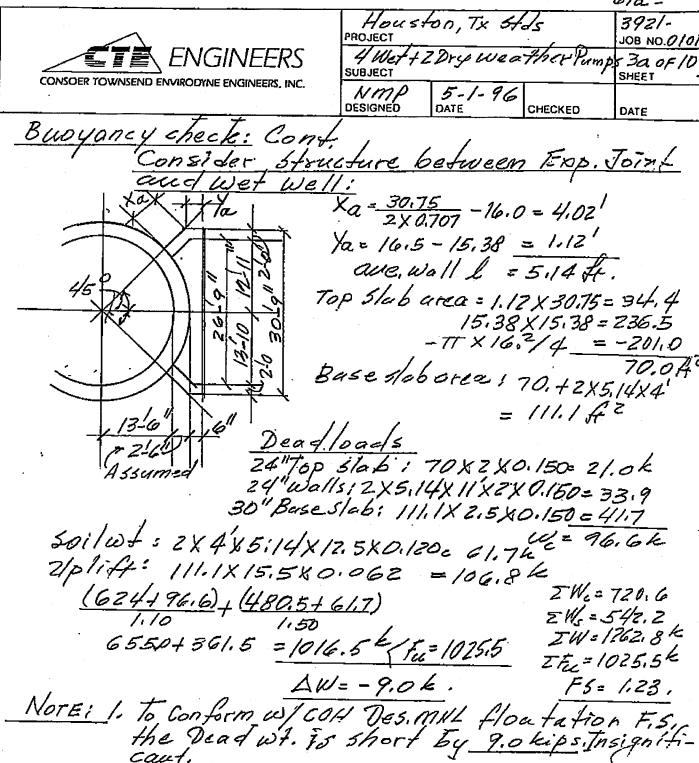
A = 13-16 m

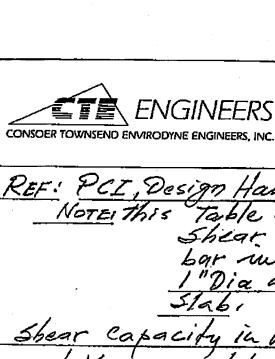
B = 17!10 m = 0.76

Mug = 0.061 x 1.34 x 13.5 = 14.9 lb/4 th, = 88

Mug = 0.019 x 1.34 x 17.83 = 8.1 lb/f

d=16-2-1 = 13 f = 0.169


fuin = 0.0033 A3 = 0.5/m². #5087 FW (0.47)


#5012 Bott EW

Dwas	H2501	Three	11751	-67-
	HOUST PROJECT	P. SSC,	STOS PUMP STALF	12 3921-00
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	SUBJECT NMP	12-7-	WEATHER PU	MPS OF 9 SHEET
VALVE PIT NO.1: 21-2×30	DESIGNED	DATE		DATE
Grating FRP wh. LIVE Load	= 25 fst	FA		
Support Beams! Beau B1: L= 29-	= 175 p=	F		
W = 175/3.1715.0	1	18		
M=0.75 × 26.75 ² /8=0	7507	5/1/		•
V=10.0k W=20.0k	2.3540	<u> 1011</u>	2X35 L	u=14 ± = 75 k connect
$\Delta = 5 \times 20 (26.75 \times 12)^3$ $384 \times 29. \times 10^3 \times 285 =$	R=16.=	3k > V: L	10k	ion
	1107 - <u>3</u>	08	5, 2 64 30	->38"
Beau B2: l= 26-9"	0 + 5.5)	42	16	-730
Bm. M= 0.96 x 26.	2 ust =	40 pl	<u> </u>	
, , , , , , , , , , , , , , , , , , ,	178 = 41	57.9 MC		
V=0.96x26.7 W= 25,684		WIZX	40 l:	14±
$\Delta = \frac{5 \times 25.68 (26.75 \times 12)^{3}}{38.44 \times 32.44 \times 32.44}$	8 8-349 R=1	b Single	# shear	=95/k Conn.
384 X 29. X 10 3 x 3/0 = 1.23" = 26/ \ 24	10		> Y = 12.84	7~

· ·				-68-
	HOUSTO PROJECT	N,TX	5705	3921-00 JOB NO.0101
ENGINEERS	4 WET & SUBJECT	2 DRY W	EATH. PCIMP	
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	MMP DESIGNED	12-7-95 DATE 5-3-9	6 CHECKED	DATE
VALUE PIT WALLS:				0.75
5 Free	Κν .	162-2	25.08 = 0.86 ×14.5	1.00
	100	PEF	P16=1.5	
Fixed 7 16=14-6"		,	P16= 21	1,0
murammy		11/=- 1	1 \$6=2 1 \$6=3	05.0
$2\alpha = 25^{-1}$ $p_{=100}$		= 1450 ps		
Mx = 0.2205 XZ/ + 0.0525 X Mx = 0.0908 XZ/ + 0.0245 X ?	305 = 20 305 = 01	1.6/4.00	= 35.14 = 16.0	14
My = 0.1628 X21 + 0.0715 X3	05 = 25.	2	= 42.9	_
My = 0.0242 XZ/ + 0.0/49 X 30			= 8.6 lk/	/H-
$t=24^{\prime\prime}$ $d_{H}=20.0^{\prime\prime}$ $f_{H}=0.$ $d_{V}=21.0^{\prime\prime}$ $f_{V}=0.$	40 44		×	·
Kny = 88. P=0,0016x1=0,00	21 Az	0.5011	2 Hori, QC	osn,#6@7"
Kmx = 40. P=0.0013 X/3 = 0.00 Kmy = 98. P=0.0018 X/3 = 0.00	7/7/ AZ	=0.40 =0.60		6014HEF
13t = 20. f=0.00/3x/133=0.0	017 A30	= 0.427	2 #6014	#607VOF DWLS.
V 0.7580 VIE 10/20V	21 122	kjr.	<u></u>	
Ymax 0.7588 x 1.5 + 0.4320x	ii. = 10.2. 10.2-1.5,	/f# X l. [3 = &r	5/4/ Va=	14.47%
\$ Ve = 2	2×0.85	4000'	(12×21.0"	, , , , , , , , , , , , , , , ,
SIDE WALLS:	27.10/4	> V=	14.47 K	
Free Consider him	ged Veri	hical E	alges.	
1 1 7 2	19.33 2×145			
1 = 14.5 m+= 0.12	17X2/+,03	137 <i>X 30.5</i> =1	128 1k Muz	21.8/4
Articipation Apt = 0.272	36XZI+0,0 01XZI+0.0	187/×305=: 188×305=:	31.05 = 5.8 =	52-8 9-8
2 a = 19-33 Knx = 55 P=	0.00/3//	33 = 0.00	17 Azy = 0.4	6 #6014
Kny= 120 P= 0	00/3 X 1, 2	33 = 0.001	7 Azy =0.4	2 #6814

	·			- 69-
	HOWS 7	ON, Tic,	5105	392/- JOB NO.
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	SUBJECT		ATHER Pumi	
	NMP DESIGNED	12-8-95 DATE	CHECKED	DATE
Buoyancy Check: Const	ider Stru	icture 1	ight of	EXP. St.
DEAD LOADS: 24"W	'alls: 2X20	1.66×13X	ZX 0.150 =	161,2 6
7-6 8050	5/06/24/	6,75×13×.	ZX0.150= 1 'V2 (V1 (C)	10112
4.0Ffg SOIL WAR 2X24.67X1	12.5×4×0.	120=296	6.0 We	=624, k
- / X 30.75 X/	2.5×4×0.1	120=184	1,5	,
4PIFF = 24.67×38,75× 15.5	X0.062 =	L=9187	ole to	W=1104.5k
624 + 480.5 = 567.3+320	1.3 = AB7	WKIT.	+,5,=-	918.7
		95./-	· = /	1.70
NOTE: See Sht. 69'a fo	in adds	Honal	Calcu	lations
Note: See sht. 69a for Bouyancy	check.	,	- •,	
Born State	•			-
Base 5/06: Net zip	lifi = 0.00 -2.5	62×15.5	=0.96	7 !
	- 2,5	50 X O.150	5=0.375	
Hinged 20.75' p	L= 116	1	12 0,372	KSF.
Hinged (20=28.75' p	b2 = 229.			
$a/b' = \frac{28}{2 \times 2}$	3.75 = = 6	2.73 === 1	P.75	
timmen '2x	19.67		/1 / _	
IN= 0.0695 x 229 = 15.9	144 Ma=	27.04	16 11 2	1/2
Mx = 0.0695 x 229 = 15.9 Mx = 0.0274 x 229 = 6.31	lle/f	=10.7	mx 7	*
My = 0.0898 x 229 = 20.6	144 =	35.0	Ka=	54
Mi=0.0898 x 229 = 20.6	4/4 Muy	= 18.4 K	14 115	- ,
+ t = 30" dr = dp = 30-3	1-1-1= 25	5.5 / Feb	2.450	
	4		,,,,	1.0

<u> </u>				-10-
HOUSTO PROJECT			STDS	3921-00 JOB NO.0101
A'Wet + SUBJECT	ZDry	We	otherfun	SHEET
DESIGNED	/2-8- DATE	95	CHECKED	DATE
1		,		

REF: PCI, Design Hand Book: 4th Ed. Table 6,20.8

NOTE: This Table can be used to evaluate,

Shear capacity of 1 DIA dowel

bor in Expansion joint TYPE-E3.

1"Dia at 12"/c in walls and base

Stab.

I shear capacity in Wall: $\phi V_{e} = 25.85 \, \text{Nowel For held toops for loss of the los$

I Shear Capacity in Base Slab:

PVc = 25.85k - Controls

Or $\phi V_c = \phi V_c' C_w C_t C_c$ where

= 27.94k $\phi V_c = 27.1k$

Where & Vo = 27,94 k. de=14 Cw = 1, ns=1. Ct = 1.0 To >7 1.3de Ca = 1,0 de > de

Wall dowels : | "\$ @ 12" Vu = 11.24 k M = 11.24 x 0,5 = 5.62" k

fu = 11.24 x60 = 24.88ks fu = 5.62 5.62 5.785 4 x 0.53 = 51.14 ksi fs = 51.24 + 24.88 = 62.4 ksi Note: Walls will not get full 24 pliff reachson. Base slab will take Some.

			·	- //-
	THOUSECT	on Tx, 5		397/- 00 JOB NO 010/
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	SUBJECT		athertum	PS 50F9
		12-8-75 DATE	CHECKED	DATE
Wall bracket from Wet	Well:	9.3-96		. "
Ref: PCA "Simplified 2	esign!	Shear	Walls	pg 6-13.
pMn= \$ [0.5 Asty	lus (1+-	Par) (1-5	7
where \$ = 0.90	· .	4544	Just	
A _{st} = #66 Lw = 13' =	1/2 HEF =	= 0.44x	(ZK/3=1	11.44 in
lω=13 = Pu=0 a	: 156° Cross 1	n= 24 60 loint	all thick.	ness
w= Ast	fy -	11.44 x	60 -	
w = Ast Lwh	fe	56 X124x	4 = 0.0	746
$\frac{c}{l\omega} = \frac{\omega}{2\omega + 1}$	0.85B.	3,	= 0.85 f	or f=4000
= 0.2	2+0.722	= <i>0.057</i>	,	
PMn = 0.90 [0.5x11.44	2+0,727 X60X/50	(0.94)	7- 3787	7 lk
Assume wet well wall	2-0 thi	ck (mi	w).	
Ro= 13.5+2, = 1	5.50			_
l= Cautilever	= \$\]/5,5	4 15.17	7-15.50	0=6.19
M2= 1.7×86×6.19=	905 lk	(37.8	-flk	* .
Base Slab bracket fro	m Wet	wellu	vall:	
L= 6.19 Cos 45°= 4,	38		 	
Max = 7.5X4.38 = 32	.81k/f	t=	2-4" 20	311
May 7,5x4,38 = 32 Pmin = 0,0018	2	\frac{-}{4} =	20" F=	0.400
A3 = 0.0018X 20X	12 = 0.4	3 mg/	#6@12"	provided.
		14-		·

	HOUSTON, TX, STDS	3921-00
FA ICH IFFER	PROJECT ZP. 35C PUMP STN- HZ	
ENGINEERS ENGINEERS	4Wet+2 Dry Weather Rump	SHEET
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	DESIGNED DATE CHECKED	DATE
VALUE PIT NO.2: 14-0x18		
Grating EPP 1/11 -	35 25	
Grating FRP Wt. = Live Load = 1	50 PS F 1	
11 W=	175 pst	
Support beam:	/	• • •
Support beau: W= 175 (4)	33 + 2,25) <u>575 pl</u>	
* ***********************************	600 pf.	
l= 16-10"	600 plf.	
$M = 0.6 \times 10^{-10}$	6.83/0= 213/4	
V=0.6x8	42 = 5.05 k W8X24	La = 16.83
W = 10,1 K		
	-215e W/2-3/11/2	12 n/a
A=0.89×10.1=0.47"	426 3 th Conn. W. R= 8.2 k	115, weld
	11-0164	16
End wall: Ref: 215 Bured	ou of Reclamation, EM No	.27.
Free 7 a/6	- 17.83 2 ×9.67 - 0.92 21.00	
- J		
b=9.673	pb=1.0	,
Fixed 7	p62. 9.4	
2 9 = 17.83' 3 = 967	D L = 4, 4	
M= 0.26/3×9.4 + 0.0644×9	10.4= 8,31k/f. Mu = 14	1. 1 1k/fr
m= 0.1008 x 9.4 + 0.0276 x 9	70.4=3.4	94/4
my = 0.2043 × 9.4 + 0.0845 × 9	70.459.6 = 16	,
mt = 0./008×9.4 + 0.0276×9 mf = 0.2043×9.4 + 0.0845×9 mt = 0.0243×9.4 + 0.0159×9	0.4 = 1.7 = 2.	8
t=12" du=95" Z=00	9	
t=12" dy=9.5" Fy=0.0 dH= 8.5" Fy=0.0	7	·
···×	•	

	HOUSTON TX	STOS OF Sto, HZ	3971-00 JOB NO.0/0/
CTE ENGINEERS CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	AWEL + 2 Dry WES	ther tumps	7 OF 9
ENGINEERS, INC.	DESIGNED DATE	CHECKED	DATE
Kmx = 201. P= 0.0039	A3=0.0039X12X8	c" nd = 3/2	11 - 11
Kny = 84, Pais 0.0018	75 20.0018 X10x12	= 0.26	#50CH #5012H1
	Az=0.0035X(CX,9.5		FEG DWL BOIZVEF
			BUILVEF
Pat Side Walls: of	2 13.5/9.67 = 1.5	\$ 21.00-	
Free)		l.a	÷
	100pc/ 162= 16-9 16-9	9.4	
6:9.67	76-9 76-9	34	·
		0.4	· .
FIXEd / 0=13.50 p=100	P=967		
, , , , , , , , , , , , , , , , , , ,	-1 .	Mu= 14	10141
Mx = 0.2949×9.4+0.0662 Mx = 0.0324×9.4+0.0077	x90.4 = 1.0	= 1,	714/4
My = 0.2949 x 9.4 + 0.1157 } My = 0.0324 x 9.4 + 0.0172 x	190.4 = 13.2 190.4 = 1.0	≈ 22. = 34	
_	•	- 52	-
Kny = 2/3. P=0.004/ A3	= 0.427n	#5060 H	Corner
K+ = 24. Pmin=0.0018 A3	- 0.5/202/34	#506 du	S/s OF
Kmy = 250 P=0.0049 And	0,26 2/4-	#5012 V	
Rome think	, , , , , ,		
Buoyancy Check: Dead Loads; Wall	k : 7x14x8.67X0	150 = 36	.4k
Bauslok	1 1X16,83X8.6, 1 14X18,83X1,33	7X0:150 = 21	9
Jal: 2x1.0	X 15.0 X 8. 67 X 0.0	C = 15	6
2/plift Force = 18.8:	X 18.83 X 8.67 X 0.0	$\frac{96}{-130}$	8 6.36/
DWB1 = 1.25×164.5-1	7/ 14 X/U X O.06	=164.5k	
1 - 61 - 11031/107.5 -/	06.0 ° 67,3 °		

	PROJECT LP SEE PUMP Stn - HZ	3921-00 JOB NO.0101
CTE ENGINEERS	AWE + 2 Dry Weather Pumps	8 OF9
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	NMP 12-14-95 CHECKED	DATE
Consider DWDL is avei	lable from wet well DI	
l brackets	retwell thru two wal	
V. per wall =	69.3/2 = 34.65 K 1.7×34.65 <u>= 58.9 K</u> (uf 1.	, D.\
Wall bracket:	1.7×34,65 = 58.9 = (2/1	(FE)
Ossume wef-w	ell wall t= 2-0 min.	
X= /3:6	Y = 915	
0-6	<u>-0-6</u> 8-11	
· · ·	-15.50' = 2.82 F.	
M= 58.9x 2.82 = 1		
Ref: PGA, "Simplified	Design' Shear walls	, pg 6-13.
9 Mu - \$ [0.5 Az fy	lw (1+ Pm) (1- C)	.,0
where Pi=0		
A31= #.	58 (2 = 0.3 X 7 X 8 = 4.96. 67' = 104" F = 12"	iur
lw = 8.0	67 = 104" F=12"	
w = A3.	+ X fg = 4.96 × 60 = e	0.0596
$\frac{c}{l} = \frac{\omega}{2}$	10.85B, B,=.85 for	f=4000
= 0,0	2596 2 + 0.7225	, ,
d M - 090 4 0.5	2 + 0.7225	-ak
4114 - 0.10 x 0.3	12 ×4.96 ×60 ×104 × 0.929	1018 1k. M = 166
Vu = 58.9 k/8. = 7,	374/4 or per 14x2	odwl.
\$1/2 = 24.2 /dw/(Co)	ntroly > Vn=7.37 k/dw/.	
(See Sht. 3 of		-

ETE ENGINEERS CONSIGER TOWNSEND ENGINEERS, INC PROJECT P. SEC PAMPS SNITTE JOB NO DOLD 19 SUBJECT P. SEC PAMPS SNITTE JOB NO DOLD 19 SUBJECT P. SEC PAMPS SNITTE JOB NO DOLD 19 SUBJECT P. SEC PAMPS SIDE NO DOLD 19 SUBJECT P. SEC PAMPS SUBJECT		
CONSCRIPTIONNEENS ENGINEERS, INC. Super S		PROJECT IP. ISC PHOP STN:HZ 108 NO OLD!
CONSCIENT CONNERS ENGINEERS, INC. SIMP 12-14-95 DATE CONSIDER COMBINEERS, INC. NIMP 12-14-95 CONSIDER COMBINEERS COMBINEERS COMBINEERS COMBINEERS COMBINEERS COMBINEERS COMBINEERS COMBINEERS COMBI	CTE ENGINEERS	
Consider Combined bending and Shear of dowels: Mu = Vuxa=0.50 x 7.37 = 3.69 k fst=0.7854x0.53 = 37.59 ksi f= \frac{7.37 x60}{7.37 x60} = 16.32 ksi f= \frac{37.59^2 + 16.32^2}{37.59^2 + 16.32^2} = \frac{40.98 ksi}{40.98 ksi} \frac{60 ksi}{60 ksi}. II \frac{5hear Capacity of '\phi xelo dw \tau base \$\frac{5}{60} \text{:}}{60 ksi}. OF \phi V_c = 25.85 \frac{1}{6} \dw . OF \phi V_c = \frac{15.2 \frac{1}{6} \dw .}{60 \frac{1}{6} \text{:}} \frac{1.30e = 104"}{60 \frac{1}{6}	CONSOER TOWNSEND ENVIRODINE ENGINEERS, INC.	NMP 12-14-95
$Mu = V_u \times a = 0.50' \times 7.37 = 3.69''k$ $f_{S_u} = \frac{3.69}{0.7854 \times 0.53} = 37.59 \text{ keV}$ $f_{S_u} = \frac{7.37 \times 60}{27.10} = 16.32 \text{ keV}$ $f_{S_u} = \frac{7.37 \times 60}{27.10} = 16.32 \text{ keV}$ $f_{S_u} = \frac{27.10}{27.10} = 16.32 \text{ keV}$ $f_{S_u} = \frac{27.59^2 + 16.32^2}{27.10} = \frac{40.98 \text{ keV}}{40.98 \text{ keV}} = \frac{60 \text{ keV}}{60 \text{ keV}}.$ II Shear Capacity of ["\$\delta \times \text{dev} \left \text{dev}	Consider C. Lat 1	DEGIGIAED DATE CHECKED DATE
$f_{S_{4}} = \frac{3.69}{0.7854\times0.5^{3}} = 37.59 \text{ keV}$ $f_{S_{0}} = \frac{7.37\times60}{27.1} = 14.32 \text{ keV}$ $f_{E} = \sqrt{37.59^{2} + 16.32^{2}} = \frac{40.98 \text{ keV}}{40.98 \text{ keV}} = \frac{60 \text{ keV}}{60 \text{ keV}}.$ II Shear Capacity of "\$\frac{4}{16}\times \frac{1}{2} = \frac{40.98 \text{ keV}}{100 \text{ keV}} = \frac{15.2 \text{ keV}}{100 \text{ keV}}. Or of $V_{C} = 0 \text{ keV} = 0 \text{ kere}$ $\int_{C_{C}} V_{C} = \int_{C_{C}} V_{C} = \int_{C_{C_{C}}} V_{C} = \int_$	M 1/40 0	nding and shear of dowels.
$f_{sv} = \frac{7.37 \times 60}{27.1} = 16.32 \text{ ksi}$ $f_{e} = \sqrt{37.59^{2} + 16.32^{2}} = \frac{40.98 \text{ ksi}}{60 \text{ ksi}} = \frac{60 \text{ ksi}}{60 \text{ ksi}}.$ If Shear Capacity of 1"\$\frac{1}{9} \times 0 \tim	1 - 7	
II Shear Capacity of / \$\delta \times 0 \text{dw} \text{in base \$\shear 6}:\$ \$\delta V_c = 25.85^{\delta} / \dwl.\$ Or \$\delta V_c = \delta V_c' C_w C_c c_c \text{ where } \delta V_c' = 5.2^{\delta} \text{ de=8}^{\delta} \\ \text{Cw=1. } \text{isde=104}^{\delta} \\ \text{Cw=1. } \text{isde=104}^{\delta} \\ \text{V_c = 15.2 \text{k/dwl.} = \text{Controls} \text{Nu= 4.66 \text{k/for} \\ \text{V_w = 27. / \text{k/dwl.} = \text{Controls} \text{Nu= 4.66 \text{k/for} \\ \text{Vw= 4.66 \text{k/for} \\ \	58 0.7854X0.5	3 = 37.59 ks/
II Shear Capacity of / \$\delta \times 0 \text{dw} \text{in base \$\shear 6}:\$ \$\delta V_c = 25.85^{\delta} / \dwl.\$ Or \$\delta V_c = \delta V_c' C_w C_c c_c \text{ where } \delta V_c' = 5.2^{\delta} \text{ de=8}^{\delta} \\ \text{Cw=1. } \text{isde=104}^{\delta} \\ \text{Cw=1. } \text{isde=104}^{\delta} \\ \text{V_c = 15.2 \text{k/dwl.} = \text{Controls} \text{Nu= 4.66 \text{k/for} \\ \text{V_w = 27. / \text{k/dwl.} = \text{Controls} \text{Nu= 4.66 \text{k/for} \\ \text{Vw= 4.66 \text{k/for} \\ \	fsu = 7.37 x60	- = 16.32 ksi
II Shear Capacity of / \$\delta \times 0 \text{dw} \text{in base \$\shear 6}:\$ \$\delta V_c = 25.85^{\delta} / \dwl.\$ Or \$\delta V_c = \delta V_c' C_w C_c c_c \text{ where } \delta V_c' = 5.2^{\delta} \text{ de=8}^{\delta} \\ \text{Cw=1. } \text{isde=104}^{\delta} \\ \text{Cw=1. } \text{isde=104}^{\delta} \\ \text{V_c = 15.2 \text{k/dwl.} = \text{Controls} \text{Nu= 4.66 \text{k/for} \\ \text{V_w = 27. / \text{k/dwl.} = \text{Controls} \text{Nu= 4.66 \text{k/for} \\ \text{Vw= 4.66 \text{k/for} \\ \	f = 37.59 ² 1 1/2, 32 ³	- 4000 ki / 60 kg.
or $q V_c = \phi V_c C_u C_c C_c$ Where $\phi V_c' = 15.2^k$ $de = 8^n$ $C_w = 1, ns = 1.$ $C_t = 1, 1.3 de = 10.4^n$ $Q V_c = 15.2 \frac{k}{dw} _{-\infty} C_c = 1.$ $Q V_c = $		
or $q V_c = \phi V_c C_u C_c C_c$ Where $\phi V_c' = 15.2^k$ $de = 8^n$ $C_w = 1, ns = 1.$ $C_t = 1, 1.3 de = 10.4^n$ $Q V_c = 15.2 \frac{k}{dw} _{-\infty} C_c = 1.$ $Q V_c = $	Il Shear Capacity of 13	\$xe-o dw/ in base 5/ab:
or $q V_c = \phi V_c C_u C_c C_c$ Where $\phi V_c' = 15.2^k$ $de = 8^n$ $C_w = 1, ns = 1.$ $C_t = 1, 1.3 de = 10.4^n$ $Q V_c = 15.2 \frac{k}{dw} _{-\infty} C_c = 1.$ $Q V_c = $	11-25-20-61	e12"4c.
$C_{0} = 1. 1.3 de = 10.4$ $C_{0} = 1. 1$	9 Vc = 25.85 7 dw	/
$C_{0} = 1. 1.3 de = 10.4$ $C_{0} = 1. 1$	or of Ve = place Cu Cy ec	where \$V_=15.2 h de=8"
Base 5/ab: $a/b = \frac{17.83}{2 \times 13.5} = 0.66$ Base 5/ab: $a/b = \frac{17.83}{2 \times 13.5} = 0.66$ Net 24/in = 10×62.4 = 624 $-1.33\times150 = -200 \text{ psf}$ Fixed $b=13.5$ $b/b=13.5$		Carl neel
Base 5/ab: $a/b = \frac{17.83}{2 \times 13.5} = 0.66$ Base 5/ab: $a/b = \frac{17.83}{2 \times 13.5} = 0.66$ Net 24/in = 10×62.4 = 624 $-1.33\times150 = -200 \text{ psf}$ Fixed $b=13.5$ $b/b=13.5$		Ct=1. h > 1.3de=10.4"
Base 5/ab: $a/b = \frac{17.83}{2 \times 13.5} = 0.66$ Net $24/6 = \frac{17.83}{20.33 \times 150} = \frac{10.24}{524}$ Fixed $b = 13.5$ $b^2 = 95.5$ $m_x = 0.0695 \times 95.6 = 6.64$ $m_x = 0.0274 \times 95.5 = 2.62$ $m_y = 0.0898 \times 95.5 = 8.58$ $m_y = 0.0473 \times 95.5 = 4.52$ $m_y = 0.0473 \times 95.5 = 4.52$ $m_z = 0.386$	DV = 15,2 4/dw/.	Ca=11 4c) de
Base $5/ab$: $a/b = \frac{17.83}{2 \times 13.5} = 0.66$ Net $24/6 = 10 \times 62.4 = 624$ $20 = 17.83$ $20 = 1$	\$ 1/5 = 27.14/dal.	- Controls / \u= 4.66 /for dw1.
Fixed $b = 13.5$ $f = 16$	2-1/	
Net $24 h = 10 \times 62.4 = 624$ $-1.33 \times 150 = -200 \text{ psf}$ 20 = 17.83 $pb = 7.07$ $524 p = 41pb^2 = 95.5Fixed b = 13.5 f = 16 d = 16-3-1-b = 11.5 f = 0.132m_x = 0.0695 \times 95.5 = 6.64 m_x = 11.3 \text{ ff} $	'b 21	7.83 = 0.66
Fixed $b = 13.5$ $t = 16$ $d = 16 - 3 - 1 - 2 = 11.5$ $f = 0.132$ $M_{XZ} = 0.0695 \times 95.5 = 6.64$ $M_{WZ} = 11.3 \text{ Mp} = 86$ $M_{Z} = 0.0274 \times 95.5 = 2.62$ $= 4.4$ $= 33$ $M_{Z} = 0.0898 \times 95.5 = 8.58$ $= 14.6$ $= 111$ $f = 0.002$ $M_{Z} = 0.0473 \times 95.5 = 4.52$ $= 7.7$ $= 58$ $= 7.7$ $= 58$ $= 1.38 \text{ m}^2$	1 / Not	20/14 = 10×62.4 = 624 D
Fixed $b = 13.5$ $t = 16$ $d = 16 - 3 - 1 - 2 = 11.5$ $f = 0.132$ $M_{XZ} = 0.0695 \times 95.5 = 6.64$ $M_{WZ} = 11.3 \text{ Mp} = 86$ $M_{Z} = 0.0274 \times 95.5 = 2.62$ $= 4.4$ $= 33$ $M_{Z} = 0.0898 \times 95.5 = 8.58$ $= 14.6$ $= 111$ $f = 0.002$ $M_{Z} = 0.0473 \times 95.5 = 4.52$ $= 7.7$ $= 58$ $= 7.7$ $= 58$ $= 1.38 \text{ m}^2$	Hisger IVE	-1,33×150 =-200 p==
Fixed $b = 13.5$ $t = 16$ $d = 16 - 3 - 1 - 2 = 11.5$ $f = 0.132$ $M_{XZ} = 0.0695 \times 95.5 = 6.64$ $M_{WZ} = 11.3 \text{ Mp} = 86$ $M_{Z} = 0.0274 \times 95.5 = 2.62$ $= 4.4$ $= 33$ $M_{Z} = 0.0898 \times 95.5 = 8.58$ $= 14.6$ $= 111$ $f = 0.002$ $M_{Z} = 0.0473 \times 95.5 = 4.52$ $= 7.7$ $= 58$ $= 7.7$ $= 58$ $= 1.38 \text{ m}^2$	20=17.83 pb	27.07 524 psf
$m_{\tau}^{*}=0.0274\times95.5=2.62^{\circ}$ =4.4 =33 $M_{\sigma}^{*}=0.0898\times95.5=8.58$ =14.6 =111 \$\text{\$\text{\$\$}\$}=0.002 $M_{\tau}^{*}=0.0473\times95.5=4.52$ =7.7 =58 $M_{\sigma}^{*}=0.38m^{2}$	Fixed 6= 13.5 / 11 \$62	= 95.5
$m_{\tau}^{*}=0.0274\times95.5=2.62^{\circ}$ =4.4 =33 $M_{\sigma}^{*}=0.0898\times95.5=8.58$ =14.6 =111 \$\text{\$\text{\$\$}\$}=0.002 $M_{\tau}^{*}=0.0473\times95.5=4.52$ =7.7 =58 $M_{\sigma}^{*}=0.38m^{2}$	m- 1 000-16" d=16	-3-1-4 = 11.5 F=0.132
$M_{y}^{2} = 0.0898 \times 95.5 = 8.58 = 14.6 = 111 $		
My -010473 ×95,5 = 4.52 = 7,7 = 58 "Az 0.38m"	M: = 0.0898×95.5 = 8.58	=146 =111 60.002
V = 0.3874×7.07 = 2.74 4/4 Vu = 4.664for #6012 TEW hinge max	My 210473 × 95,5 = 4.52	= 7.7 258 Az 0.38m
J Max " " " " " " " " " " " " " " " " " " "	V = 0.3874×7.07 * 2.74 k/	1 V = 4.6644 #6027EW
	Jinax	" " " " " " " " " " " " " " " " " " "

		-/6-
	CITY OF LOUSTON, TX	3904-00 JOB NO.0101
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	LIFT. STW- WOVALVE VAULT SUBJECT AWET & 2 DRY PUMPS	10.
CONSIDER TOWNS ENVIRONME ENGINEERS, MVC.	DESIGNED DATE CHECKED	11-8-94 DATE
WETWELL: TOP SLAB!	-11 (3ht. C34	2)
Bound Beau B1: 6-310"	44	
(Between Hatches) t = 24"	d=21, F=1,689.	
L= 27-0"(±)	6,28 (%, of 1-0 Brg ca.	end)
Loads; DL: W; = Wz = .	30 × 4.75 = 150	4
W3 2 3	300 × 2175 = <u>875</u>	2/25
16. Wy = 3	- W3 X 8.58 = 2575 X/17=4.38	X1-4=298
	with Zwa - 7.36 kg	7# \\ #
7-10, 3-10, 4-8" 3-10, 7-10		1252.8 K
28'	-2/7416175 =-	146.7
W1 16.1×1.4. 22.54 22.54 22.54 2.9	- 2.2 x /1/7, =-	19,2
W3mil 1.9 × 1.4 = 2.69 , 2.6	7. – 6.93 <i>X 9.8</i> 3 = –	68.2
Waend 6.46 × 1.409.04 9.04 Wh 36.05 × 1.7261.29 61.29		398.9 617.2 /k
77 9852 98.5	Z Cl:	-27)
= 81,94k	1.75) Mu=98.80x14 = 1 -22.54x7 =-	1379.
Φ/c= 103,9k	-294X7'=-2	20.0
K= 522 P=,0107	- 2.69× 1.17 = - - 9-04 × 10.08 = -	3.0 91.
A = 10,33 in 2	- 9-04 × 10.08 = - -61-29 × 7: = -4	129.
13. +8 BoH	-61.29 x7; = -4 Mu = 67. -67	14 = 881
(ru 46"	width w/ 22" Side Cover	フ <u>. </u>
·		

			- •
PROJECT		ISTO N, TK	100 40 4/0/
SUBJECT 44	V. W/O . UET+ 21	VALVE VAULT DRY WIRPU	DO. 20
DESIGNED	//- 4-9 DATE	4 JAM CHECKED	11-8-94 DATE

Boud NOZ: Between 4 Hatches and Discharge pipes. L= \13.5-4.812 XZ= 26,23 +1.0:26.23 c/6 b_ = 8.44 -1.00 - 24 pripe -4.81 2.63 ft = 31.5 Say 31. Loads: DL; 300 x 3.63; F = 1.13930 psf x 2.52 $= 1089 \times 1.4 = 1.52$ 1L: 300 x 6.15; $= 1845 \times 1.7 = 3.14$ Ma. $4.77 \times 26.23/8 = 410.16$ 04.130/0 $= 4.77 \times 1.4$ Muj=1.3 Mu = 5331/2 Vaj=4,77 (26.23-0.5-1.75)

= 51.86 = 51.86 = 51.86 = 0.85 x 2 14000 31 x 2/= 70. A3 = 6.18 in 8 #8 @ 33" 46. Boff. Beaux B3: between Hatches: b=1-46" t=24" W= DL = 300x 1.38 - 4/4 x1.4 = 580 30 x 4.50 = 135 x1.4 = 189. 1L = 300 x 5.38 = 16/4, x1.7 = 2744 P-7/11 = 2/63 Wa 35/3.p/f. l= 7.0%" Mi 3.5 x 7,04/8 = 22 16 Mades = 1-3 Mu = 28/k Pimi = 0.0033 A= 1.04m2 2#8T&Bot-Vu= 12.3k (4 1/2 35.4k

	 , -		
CITY OF	· HOUSTON	U, Tx	3904.00
PROJECT		<u> </u>	JOB NO. 0/0/
LIFT ST SUBJECT 4	N. W/O VA WET+ ZDRY	LUE VAULT	21:
MANGO	11-7-94	JAM	11-8-94
DESIGNED	DATE	CHECKED	DATE

VALUE PADS: A = 14/11 B = 24!3" To = 0.58 W = 12 s/ab150psf x1.4 = 210.

16 (No frack) 150psf x1.7 = 255

300psf $w_n = 465 \text{ psf}$. $M_{A^2} = 0.081 \times 0.465 \times 14.04^2 = 7.4 \text{ k/A} \times 1.7 = 116$ MB = 0.010 × 0.465 × 24.25 = 2.74 f VA = 0.89 × 0.465 × 14.04 = 2.91 h/f /min = 0.0033 Where = 1.876/f A3 · 0.3/m² #50.12 Bott EW 4508 Top Ea). Gr. Wall:

	C/74	of Hou	STON	3904-00
ENGINEERS	PROJECT	ation w	/ Vaults	108 NO.0/0/
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	SUBJECT 4	wet +2 Di	/ Vaults	SHEET
CONSOLITION INC.	NMP DESIGNED	<i> -14-75</i>	CHECKED	DATE
VALUE VALLT:			<u> </u>	
Tan slabe 100 de 2011 el		. –	1	
Top Slab: Loads-24"5/2 Hatch 12: e3 Right Vault:	e 30psf)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0012577 _{X1}	1.4 - 525
22: e 3	300005	_/ = 30	10 Zx17	- 7/7
27 // 1. 1/	10psfx2.1	= 12	25^"/	= ///
Right Vault:	<i>y</i> .	W= .79	7 W	= 1242
$L \approx 27-9$, $CV = 27$	F 50.	441.	-	
Mu= 1.24×27.75/8=119,9	4 19/4			
1/-/9//77/46 - 1	1. / . 1 /2//	< \$1/2	0.85XZ 40	12X2/X 000
Fm= 270.7 P=0.005	3	· ′ =	27.14/4	F
A= 1.33.00	2/4 #	-807 Bo	How (.1.5	46, Eu2).
Left Vault:	#	508 Tap	EW and	of Frances
$Vu = 1.24 \left(-\frac{21.15}{5} - 2.25 \right) =$ $Km = 270.7$ $f = 0.005$ $A_3 = 1.33 i$ $Left Vault:$ $l = 17-10''$ $l min = 0.0$	to	#8.7/0	2.47m2/	A)
Time = 0.0	033	1/	/ -	ا ۱۹۰۱ م
A3 = 0.83	#80	1/Z 80 H.	(0.79 mi)	(H-).
11/2-12-1-1-1-1	/ .			
WALLS: See Lift 5th 3 wer	+ 2 dry	Francis 5	•	
		,		,
BASE SLAB: Loads: Top slab, DL	3000	5 € 0		
	300 p	5#		
walls: 28.75	. r			
20.50 20.50				
20.50 69.75 H	XIIXO.IA	n= 115.16		
		Z8.75x20	= 192	
Consider Water table to be	Zep to	Limsh, g	rade. I	esign
Consider water table to be Engineer to Verify for	100 yr	flood	if Critic	cal
his = 2:0 : repliff = 1	5.5 x6Z1	4= 967:	05 p. 1	
216	•		J	
15-6"	•			

		-8
	PROJECT OF Houston	3904-00 JOB NO. 0/01
CONSOER TOWNISEAR SANGORMAN SANGUERS	Liff-Str W/Vaults SUBJECT 4 Wet + 2 dry Pumps	Z3 SHEET
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	NYMP 1-19-95	DATE
DL = 24 Top 5/ab = 30	oopsf	· I
30 Bace 5/6 - 27	5 " 15" walls = = =	144 pst
DL: 24 Top 5/ab = 30 12 Walls, = 19 30 Base 5/ab = 373	Opst	
Consider 1-6 Wide	la outside.	0
Joil WF = (20,5+2	20.5 + 31.75) X 1.5 X 14.5 X 60 pc	:#
TDL = 103/ ml	20.5 + 31.75) X 1.5 X 14.5 X 60 pc 28:75 × 20.5 2!0 wide Ffg	= 16/ps+
F5 = 1031 - 10		7-21/1951
F5 = 1031 = 1,0		
ZDL required =	1.2×967= 1160 psf	
1 Andredit	= 120 - 1	
I Increase twell = 15" = ### = 2-0" =	49 psf + 3 = 105 per = 1	ارم
12/se Ffg = 2-0 =	SG ps FV J	ر عر
I Increase wall thickness	s, to=16 and fly to	2-0
20.50'		
	/ 2	. 1
10,42 ft X	11. x 1.33 x 0.150 = 154.9 2 20.5 x 29.4	= = 257
	2010 X 27.72	Z ST
20.50 33.42	1 mark	
74,42X14. \(\SDL = 300 \) Top	5x2, x60 pcf = 129,5 k 3Lab = 20.5 x 29,42	= 214 ps A
257 was	the .	
2/4 Back 1/46 ps f	- fill + 1146	
	Fis= 1146 = 1.19=1	1.20-

			-81-
ENGINEERS	CITY OF HOPROJECT	, .	3904-00 JOB NO.010
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.		y Permps	24 SHEET
	DESIGNED DATE	CHECKED	DATE
Consider Base Stab a	s Two-way.	Slab hin	gedat
Medges. IL	= 300 / X /	17 = 510 14 = 1080	,
Consider Base 5/ab a all edges. LL Top s/ab wall 5 5011 fill	= 257 \ = 114 \ /:	un=1590	psf_
a = 20,50' w b = 27.75' M = "	1-1071ps/1		•
6 = 27.75 M = "	27.75 = 0.74		
Mup = 1.59x 20,5 x0,0	061 = 40.8 K/A	Kn= 63	
Mt = 1.59 x 27.75 x0.	019= 23.3164.		
d=30-2-2-k=25	5.5	r.	
	Az=1.0in / f.		EW.
		11 ===11 =	77 27.1

Smaller Vantt: See 3 west + Zohn Prumps Lift Station.

CTE ENGINEERS
CONSOER TOURNSEND EMARODYNE ENGINEERS INC

(111) Wind-any direction

				82-
HOUSTON, TX STDS.		3921-00 JOB NO.0101		
	CONTROL BUILDING SUBJECT		/ OF 5	
	NMP DESIGNED	/Z./9-95 DATE	CHECKED	DATE

Dead loads: Asphalt shingles = 3 psf
5/8 Plywood Sheathing: 3 psf
Roofslope 5V:12H = 22,50
W= 7psf (Horizontal projection) 5p Gypsm Ceiling = 3 psf Trusses e16 %. Approx wt = 3 psf Insulation = 2 psf Live load Wet = 16 pet WDL+11 3/psf. Win- load: wind pressure where Ce=1.06, Exposured G= See Sketches. G=20.8psf for 90MPH ROOF: p= G G 9, I \$ = 1.06×20.8×1.15 Ca (1) Wind perpendicular to Fidge = 25,4 Cg Poof: p = 25.4 G = 7.62 Say 8 psf $p = 25.4 G_2 = 22.86$ 23 psf $--11 C_2 = 17.78$ 18 psf (ii) Wind-parallel to ridge Wall: Cg=0.5 Wall: P= 25.4x0.8 = 20.32 21psf

Ps = 25,4 x 0,5 = 12,70

		_	-63
HOUSTO PROJECT	N,TX 3	705	3921-00 JOB NO.0101
CONTROL BUILDING SUBJECT		Z OF 5 SHEET	
NMP DESIGNED	12-19-95 DATE	CHECKED	DATE

Roof trusses spaced of 16" =/6.

13'4"

10'8

RDL = 15 ps

RLL = 16 ps

RwL = - 23 x 13 =

RWL = - 18 x 1.3 =

RDL + 11 = 133 +

RDL + 11 + WL = 2;

RDL = 11 + WL = 2

Wall Reaction Per truss:

RDL = 15 psf x 1.33 x 13.33 = 133

RLL = 14 psf x 1.33 x 13.33 = 142*

RWL = 8 x 1.33 x 13.33 x 7.92 = 62*

RWL = - 23 x 1.33 x 13.33 x 7.92 = 476*

RWL = - 18 x 1.33 x 13.33 x 1.25 = -22*

RWL = - 18 x 1.33 x 13.33 x 1.25 = -22*

RDL+LL = 133+142 = 275 #.

RDL+LL+WL = 275+62-22=315 #

RDL-UL = 133-176-22=-65#215/14

Anchor Truss to 2"x6" wall plate w/ fer Truss
Hurricane ties to take 6516s ziplift and
17 16s lateral Force.

Wall: Height of wall = h= 9-4", Wind load = 21 psf.

M_{des} = 0.75 x z/x 9.33²/_e = 171 A-16 s/A (M_R = 598) Vdes = 0.75 x z/x 9.33/₂ = 73 /6 s/A

N= axial load V/Truss = 133×73=97 165

= 275 lbs/Truss

=-65/bs ziplitt/Touss. Neglecting axial load, 6"cm2 fon 1500 pri #5024" Vert Reinf

NOTE; Continue #5 e 24 Vert. Rein E. in to bond beam at top of wall.

	HOUSTON, TX STDS	3921-00 JOB NOOFO!
ENGINEERS	CONTROL BLDG SUBJECT	3 OF 5 SHEET
CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.	DESIGNED DATE CHECKED	DATE
Wall Top plate : And 58"	horad to masonry Dia X12" Long at 24" =/c	(w)
M = 65 x 24 .	390 in-16.	
V = 65/2 = 38 1/2	。 こ 2	
2X6 plate 5 = 5.50 × 1. = (southern Ping) 390 = 189	= 2,06 in 3	
2.06 -101	1 = 1200 par	
8.25	psi (Fv = 95 psi.	
Bond beam:		
8"x 8" w/2 #5 Las	es Conf. w/2x6" Wall p	late.
W4 = 0.67 X 0.67 X /	30pef = 58/bs/ff	
Lateral load per to	25 Conf. W/2X6"Wallpo 30pef = 58/bs/f 1,33x58 = 78/bs/77u uss per wall	SS 68 lbs
H = 25.4 x 9.33 X/-	33 = 79/br/Truss	
Hw Hw Hw Hw Hw Hw Hw Hw	MJ 316X4.92 = 1555 - 79. (0.67+2+3.33+4.67,	A-16s)=-843
	Mw = 7	1/2 ff-165.
17	7×6 wall Tf S= 7,563 in	3
V= 37616	f= 7/2×12 = 1/30 p	
Bond Bm: 2#5 bars in		
	OR = 0.93 m²/fr = NR = 20142 in-	x #7e8
	OF MR = 20142 X0.67	= 1500 H-A
:	W 10 X0.13	

Look-Duts

Upliff on look-out

Un= 1.33 × 23=-31 16s/4 WDL = 1.33 × 15 = 20/65/ff 6 WLL = 1.33 × 16 = 22/65/ff 6

 $M_{01+10} = \frac{42 \times 2.08^{2}}{2 \times 4} = 91 \text{ ff-lbs}$ $\frac{2 \times 4}{4} = \frac{3.063}{3.063} = 356 \text{ psi} \left(\frac{7}{4} = 1700\right)$

A/2 = 91 = +50 /65/ 1/2 = 42 × 1.83 = 38/6 = 1

V2, = 38+50 = 58 65

 $V_{2R} = 38 - 50 = -12 |bs| = 21 |f| + a + \frac{1}{1805}$ $W_{DL+WL} = -3/+20 = -1/|b| \cdot V_1 = 23 |bs| = \frac{1}{1805} = 24 |f|$ $\Delta V_2 = \frac{24}{1.83} = \pm \frac{1}{3} |bs|$

1/2 = 11×1.83 =-10/6= 1/2=-10-13 = -23/6=1

V= -10+13= 3 165

Max, uplift at Wall = V, + V2L = -46 165 T Provide Huricane Strap between 2x4 Look-Octs and 2x6" Wall plate. Anchor Wall-plate w/ 50" & e 260" into CMU Bond beam on

top of wall.

HOUSTON, TX, STDS PROJECT CONTROL BLDG SUBJECT		3971-00 JOB NO. 0/0/	
		5075 SHEET	
UMF DESIGNED		CHECKED	DATE

End Wall:

Consider Wall with door opening

H = 3/6 lbs wind load on 3-4" wall length.

Mw = 3/6×9.33'= 2948 A-165 40-9=31 d=31 A3=0.3/10 1#5 En Face #5024 T Til = 9.33 = 3.3 > 1.5 acts as Flexural Element Allow Shear, Fo = 1.7500 = 35 psi t= 2-10" fu = 3/6 0.8 × 5.62 × 34 = 2. PSI (2 Fv = 17psi OPNE Assume Axial load, Pao. for = 25 per. Mr. fos = 25 x 6x 34 = 2408 > 0.75 Mw= 2211 ft-16s. or MR = F. Azjd = 20000x0,31x0.8x31 = 12813 ft-16= Wall load at Gr. Floor Level:

Roof: W= 315/1.33 = 237 lbs/f.

wall (40+2+40) × 9.33 = 765 Gr. Floor 8" slab = 100pst LL = 250 " 350 psfx2.0= 700lbs/ff Gr, Wall 1x2.0 x 150 p= f = 300 lbs/A-Allow. Soil bearing press = 2000psf b= 12011 Fly rego

CONSOER TOWNSEND ENVIRODYNE ENGINEERS, INC.

HOUS HE PROJECT	oh, Tx, 5	705	3921-80 JOB NO.0/01
SUBJECT SUBJECT	ROL BLD	96	6 of 6
MM P DESIGNED	1-22-96 DATE	CECKED	DATE

Roof sheathing:

58" Exterior grade Plywood on trucses @ 16"%.

Consider & J (l = 2½") Common nails.

Min. penetration = 2.50-0.63" = 1.87"

21BC Table 25G V = 78.165/mail. W/1½"pen.

25H T = 41.16/nail/1"pen.

Allowable V = 78 × 1.87/1.50 = 97 lbs

Allowable T = 41 × 1.87 = 76 lbs.

Max 2/plife = 23 psf x 1.33 = 31 lbs/ft along truss

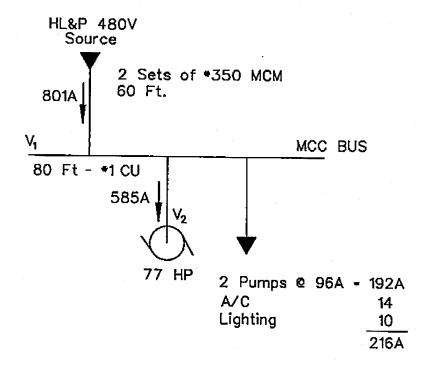
max shear = 14×21 × 2.75×7.21 = 66 lb/ft along truss

provide & common nail at 8" 4c along truss

provide & common nail at 8" 4c along truss

truss. (16" 96 shear and 16" Tousion

Tallomable = 76 = 57 lbs/ft > 31 lbs/ft actual


Vallowble = 97 = 73 165/ft > 66 lbs/ft actual

PLYWOOD NAILING	SCHEDULE
BOUNDARY NATUNG	- 8d ● 4 0.C.
PANEL EDGES WITHIN 5'-0' OF ROOF EDGE @ EA. CABLE	= 6d € 4" 0.C.
OTHER PANEL EDGES	- 8d # 6° 0.C.
ALL NALS SHALL BE CALVANIZE	D COMMON NAILS

APPENDIX C TYPICAL ELECTRICAL DESIGN CALCULATION EXAMPLES

VOLTAGE DROP CALCULATIONS

- 1. Assume starting pump 3 with 2 pumps at full load and all auxiliaries on. (Pump 4 on standby).
- 2. Use published full load amps and starting inrush amps at 460V on 480V system.
- 3. Power factor 0.95.

$$V_{1} = 480 - \left(\frac{801}{2}\right) \left(\frac{60 \text{ Ft}}{1000}\right) \left(0.101\right)$$

$$V_{1} = 477.6V \qquad V_{01} = \frac{\left(480 - 477.6\right)}{480} = 0.50\%$$

$$V_{2} = V_{1} - \frac{\left(585\right)\left(80 \text{ Ft}\right)}{1000} \left(0.308\right)$$

$$V_{2} = 477.6 - 14.4$$

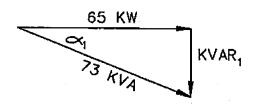
$$V_{2} = 463.2 \qquad V_{02} = \frac{\left(480 - 463.2\right)}{480} = 3.50\%$$

POWER FACTOR CORRECTION CALCULATIONS

PUMP DATA

Rated Output - 77 HP (57 KW)

Rated Input - 92A @ 460V (65 KW)


Published PF @ 100% - 0.89 Published PF @ 50% - 0.82

100% LOAD

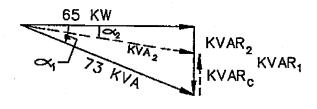
Input KVA = (92)(0.46) \(\bar{3} = 73 \) KVA

Input PF = $\frac{65 \text{ KW}}{73 \text{ KVA}} = \underline{0.89}$ - checks with published value

Input Conditions:

$$KVAR_1 - \sqrt{73^2 - 65^2}$$

Check:

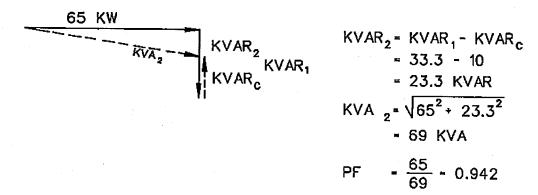

 $\alpha_1 = \cos^{-1}(0.89) = 27.1^{\circ}$

KVAR₁ * [sin (∞4)](73 KVA)

= (0.456)(73)

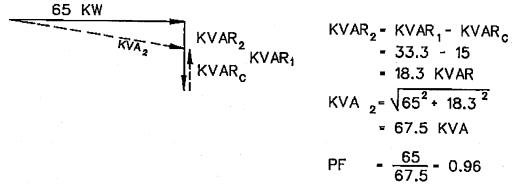
<u> 33.3</u>

To Correct PF To 0.95 LAG:

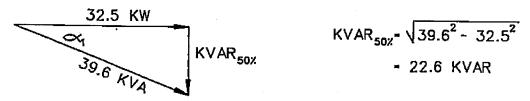


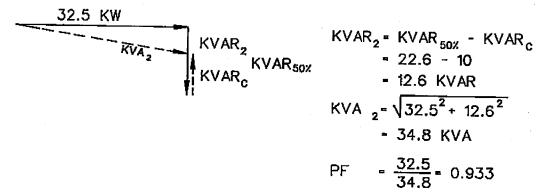
PF
$$= \frac{KW}{KVA_2}$$

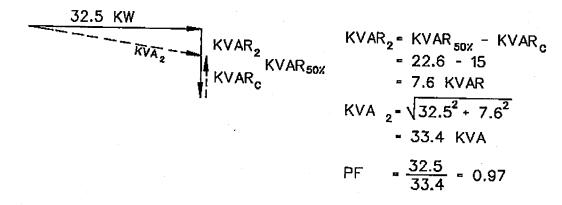
 $KVA_2 = \frac{KW}{PF} = \frac{65}{0.95}$
 $= 68.4 \text{ KVA}$
 $KVAR_2 = \sqrt{68.4^2 - 65^2}$
 $KVAR_2 = 21.3$


Check:

Standard Commercial Sizes --> 10 KVAR or 15 KVAR


Using 10 KVAR Correction:


Using 15 KVAR Correction:


50% LOAD

Using 10 KVAR Correction:

Using 15 KVAR Correction:

USE 15 KVAR CAPACITORS

USING 15 KVAR CAPACITORS:

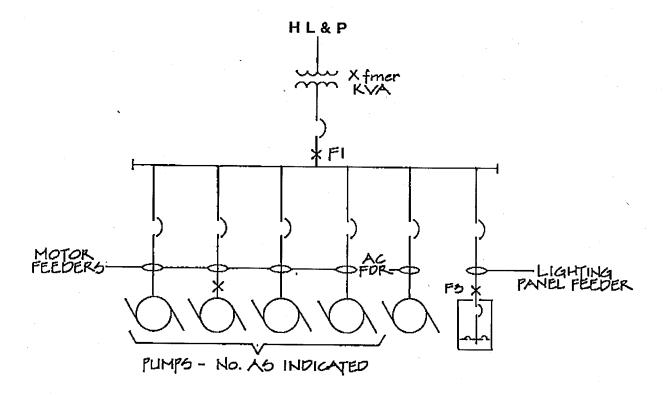
$$I_c = \frac{15 \text{ KVAR}}{(0.48)\sqrt{3}} = 18A$$

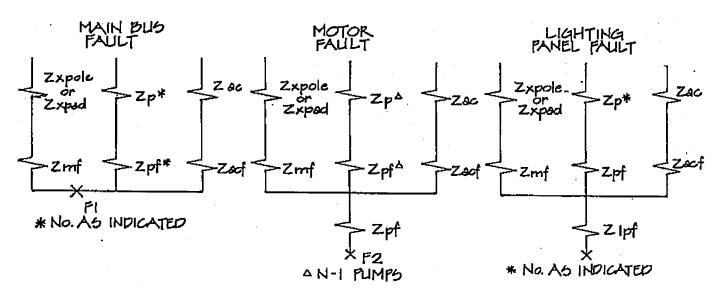
Per NEC 460-8:

Minimum capacitor conductor ampacities --> of 135% of I_c or 33% of motor circuit conductors

I_c X 135% = (18)(1.35) = 24.3 Motor conductor ampacity (*1) = 130A 130A /3 = 43.3A - Minimum Use *8 CU capacitor conductors

LOAD CALCULATIONS


	MOTOR CONTROL CE	NTER	
CIRCUIT	DESCRIPTION	HP / KVA	FLA
. 1	MAIN BREAKER		
2	PUMP NO. 1	75 HP	96
3	PUMP NO. 2	75 HP	96
4	PUMP NO. 3	75 HP	96
5	PUMP NO. 4	75 HP	96
6	AIR CONDITIONER	10 HP	14
7	LIGHTING TRANSFORMER	5 KVA	10
	TOTAL		408


	LIGHTING PANE	L	
CIRCUIT	DESCRIPTION	WA ⁻	пs
1	CONTROL POWER	200	
2	MCC HEATER	150	
3	PLC		250
4	AIR COMPRESOR		500
5	LIGHTS	170	
6	SPARE	500	
7	BUILDING RECPTACLES		360
8	SPARE		500
9	SPARE	500	
10	SPARE	500	
11	SPACE		500
12	SPACE		500
TOTAL WATTS		4630	WATTS
SERVICE VOLTAGE		240	VOLTS
TOTAL AM	PERES	19	AMPS

FAULT CALCULATIONS

STATION TYPE	4 F	PUMPS @	75 H	HP (KVA)	
SERVICE VOLTAGE TRANSFORMER KVA XFORMER Z – POLE MTD XFORMER Z – PAD MTD	480 500 0.02 0.03	BASE KV USED AS BA	0.48 SE KVA		
FEEDERS — MAIN PUMPS AIR CONDITIONING LIGHTING PANEL	NO. 3 1 1	AWG - 350 - 1/0 - 6 - 6	LENGTH 100 50 20 20	Z tot 0.002063 0.0067 0.00988 0.00988	<i>Zpu</i> 0.0045 0.0145 0.0214 0.0214
<u>LOADS</u> PUMPS AIR CONDITIONING		<u>KVA</u> 75 10	<u>Z pu</u> 1.6667 12.5000		
EQUIVALENT Z pu XFORMER & FEEDER ALL PUMPS N-1 PUMPS AIR CONDITIONING		POLE MTD 0.0245 2.3792 1.7844 12.5214	<u>.</u>	P <u>AD MTD</u> 0.0345	
FAULT CURRENTS MAIN BUS AT MOTOR AT LIGHTING PANEL		POLE : <u>Z tot</u> 0.0242 0.0386 0.0456	<i>MTD</i> <u>/ sc</u> 24870 15564 13182	PAD N <u>Z tot</u> 0.0339 0.0483 0.0553	<i>ITD</i> <u>I sc</u> 17744 12458 10869

SHORT CIRCUIT CALCULATIONS

C-3300

ELECTRICAL DATA

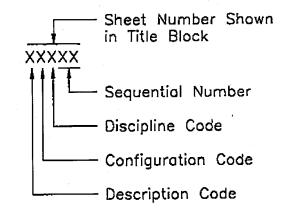
F 11
SUPERSEDES ISSUED
4/86 2/88

MOTOR DATA

Rated Output Power нР(Кw)	Ø	Vnom	Full Load Amps	Starting Amps Surge/LR	Locked Rotor KVA	NEC Code Letter	Rated Input Power (Kw)	Poles/RPM
32 (24)	3	460 575	42 34	234/164 187/131	131	D	27	8/875
6 Pole 60 (45)	3	460 575	72 58	445/287 356/230	228	С	51	6/1165
8 Pole 60 (45)	3	460 575	81 65	380/243 304/194	193	В	52	8/875
77 (57)	3	<u>460</u> 575	92 74	585/375 468/300	_298	C	65	6/1170
88 (66)	3	460 575	108 86	590/445 472/356	354	D	73	4/1770
120 (90)	3	460 575	140 112	1030/765 824/612	609	F	100	4/1775
								<u> </u>
<u> </u>				-		 	ļ	

Pump Motor		EFFICIENCY			POWER FACT	OR
HP	100% Load	75% Load	50% Load	100% Load	75% Load	50% Load
32 60(6 Pole) 60(8 Pole) 77 8B 120	87.5 88.5 87.5 87.7 90.0 90.0	86.9 88.5 88.0 87.5 90.0	84.2 86.8 86.5 86.8 88.0 88.5	0.82 . 0.89 0.82 0.89 0.85 0.89	0.78 0.87 0.79 0.87 0.82 0.87	0.70 0.82 0.71 0.82 0.75 0.81

CABLE DATA


HP x Volts	Max. Length ft.	Gauge	Nominal Dia.	Conductors (in one cable)
32 x 460	630	#4/3-2-1-GC	33.8mm (1.33")	(3) #4 AWG (PWR)
32 x 575	970	#4/3-2-1-GC	33.8mm (1.33")	(2) #10 AWG (CTRL
60 x 460	240	#4/3-2-1-GC	33.8mm (1.33°)	(1) #6 AHG (GND)
60 x 575	340	#4/3-2-1-GC	33.8mm (1.33°)	(1) #10 AHG (G.C.
77 x 460	560	#1/3-2-1-GC	41.7mm (1.64")	(3) #1 AWG (PWR)
77 x 575	840	#1/3-2-1-GC	41.7mm (1.64")	(2) #10 AWG (CTRL
88 x 460	480	#1/3-2-1-GC	41.7mm (1.64")	(1) #1 AWG (GND)
88 x 575	720	#1/3-2-1-GC	41.7mm (1.64")	(1) #8 AWG (G.C.)
120 x 460 120 x 575	475 745	#0/3-0-2-GC	42.0mm (1.65")	(3) #0 AWG (PWR) (2) #5 AWG (GND) (1) #5 AWG (G.C.)
120	Pilot Cable	≝14/7	17.8mm (0.70")	(7) #14 AHG

City of Houston Design Guideline Drawings For Submersible Lift Stations Filename & Sheet Numbering Designation Codes

Description Codes

A - 2-Pump Station 100 gpm per Pump B - 2-Pump Station 100-300 gpm per Pump C - 2-Pump Station 250-500 gpm per Pump - 3-Pump Station 250-2000 gpm per Pump E - 3-Pump Station 2000-5300 gpm per Pump F - 4-Pump Station 500-2500 gpm per Pump - 5-Pump Station 2 Dry & 3 Wet Weather Pumps H - 6-Pump Station 2 Dry & 4 Wet Weather Pumps Open J - Open - Open Open - Open - Open - Open - Open - Open Open. Open - Open Open Open W - Level | Instrumentation - Level II Instrumentation Y - Level III Instrumentation Z - Common Drawings

Filename Designation

Discipline Codes

- A Architectural
- C Civil
- F Electrical & Instrumentation
- G General
- S Structural

Configuration Codes

- 0 Dwg Non-Specific to Configuration
- 1 Alternate High Profile Configuration
- 2 Preferred Configuration
- 3 Alternate Low Profile Configuration

	COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS
New	Drawing Title
Sht No.	
Z0G01	Title Page
Z0A01	Control Building, Architectural
A1C01	Plan View @ Grade & Sections, 2-Pumps @ 100 gpm per Pump, Alternate High Profile Configuration
A1C02	Elevation Sections, 2-Pumps @ 100 gpm per Pump, Alternate High Profile Configuration
A2C01	Plan View @ Grade & Sections, 2-Pumps @ 100 gpm per Pump, Preferred Configuration
A2C02	Elevation Sections, 2-Pumps @ 100 gpm per Pump, Preferred Configuration
A3C01	Plan View @ Grade & Sections, 2-Pumps @ 100 gpm per Pump, Alternate Low Profile Configuration
A3C02	Elevation Sections, 2-Pumps @ 100 gpm per Pump, Alternate Low Profile Configuration
B1C01	Plan View @ Grade & Sections, 2-Pumps @ 100 - 300 gpm per Pump, Alternate High Profile Configuration
B1C02	Elevation Section, 2-Pumps @ 100 - 300 gpm per Pump, Alternate High Profile Configuration
	Plan View @ Grade & Sections, 2—Pumps @ 100 — 300 gpm per Pump, Preferred Configuration
B2C02	Elevation Section, 2-Pumps @ 100 - 300 gpm per Pump, Preferred Configuration
B3C01	Plan View @ Grade & Sections, 2-Pumps @ 100 - 300 gpm per Pump, Alternate Low Profile Configuration
B3C02	Elevation Section, 2-Pumps @ 100 - 300 gpm per Pump, Alternate Low Profile Configuration
C1C01	Plan View @ Grade & Base Sect, 2-Pumps @ 250 - 500 gpm per Pump, Alternate High Profile Configuration
C1C02	Elevation Section, 2-Pumps @ 250 - 500 gpm per Pump, Alternate High Profile Configuration
C2C01	Plan View @ Grade & Base Sect, 2-Pumps @ 250 - 500 gpm per Pump, Preferred Configuration
C2C02	Elevation Section, 2—Pumps @ 250 — 500 gpm per Pump, Preferred Configuration
C3C01	Plan View @ Grade & Base Sect, 2-Pumps @ 250 - 500 gpm per Pump, Alternate Low Profile Configuration
C3C02	Elevation Section, 2-Pumps @ 250 - 500 gpm per Pump, Alternate Low Profile Configuration
<u> </u>	
D1C01	Plan View @ Grade & Base Sect, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate High Profile Configuration
D1C02	Elevation Section, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate High Profile Configuration
D2C01	Plan View @ Grade, 3Pumps @ 250 - 2000 gpm per Pump, Preferred Configuration

	COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS
New	Drawing Title
Sht No.	
D2C02	Elevation Section, 3-Pumps @ 250 - 2000 gpm per Pump, Preferred Configuration
D2C03	Base Section, 3-Pumps @ 250 - 2000 gpm per Pump, Preferred Configuration
DEGG	
D3C01	Plan View @ Grade, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate Low Profile Configuration
D3C02	Elevation Section, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate Low Profile Configuration
D3C03	Base Section, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate Low Profile Site Configuration
·	
F1C01	Plan View @ Grade, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate High Profile Configuration
F1002	Flevation Section, 3—Pumps @ 2000 — 5300 gpm per Pump, Alternate High Profile Configuration
E1003	Base Section, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate High Profile Configuration
2,000	
F2C01	Plan View @ Grade, 3-Pumps @ 2000 - 5300 gpm per Pump, Preferred Configuration
F2C02	Elevation Section, 3-Pumps @ 2000 - 5300 gpm per Pump, Preferred Configuration
F2C03	Sections, 3-Pumps @ 2000 - 5300 gpm per Pump, Preferred Configuration
E3C01	Plan View @ Grade, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate Low Profile Configuration
F3C02	Elevation Section, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate Low Profile Configuration
E3C03	Base Section, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate Low Profile Configuration
F1C01	Plan View @ Grade, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate High Profile Configuration
F1C02	Elevation Section, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate High Profile Configuration
F1C03	Base Section, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate High Profile Configuration
F2C01	Plan View @ Grade, 4-Pumps @ 500 - 2500 gpm per Pump, Preferred Configuration
F2C02	Elevation Section, 4-Pumps @ 500 - 2500 gpm per Pump, Preferred Configuration
F2C03	Base Section, 4-Pumps @ 500 - 2500 gpm per Pump, Preferred Configuration
F3C01	Plan View @ Grade, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate Low Profile Configuration
F3C02	Flevation Section, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate Low Profile Configuration
F3C03_	Base Section, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate Low Profile Configuration
G1C01	Plan View @ Grade, 3 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration
G1C02	Elevation Section, 3 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration
G1C03	Base Section, 3 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration

COH	DESIGN	GUIDELINES	FOR	SUBME	<u>RSIBLE</u>	<u>STATIONS</u>
			D		-	

	COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS
New	Drawing Title
Sht No.	
G2C01	Plan View @ Grade, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration
G2C02	Elevation Section, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration
G2C03	Base Section, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration
G2C04	Station Operation Tables, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration
G3C01	Plan View @ Grade, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
G3C02	Elevation Section, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
G3C03	Base Section, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
G3C04	Station Operation Tables, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
H1C01	Plan View @ Grade, 4 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration
H1C02	Elevation Section, 4 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration
H1C03	Base Section, 4 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration
H2C01	Plan View @ Grade, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration
H2C02	Elevation Section, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration
H2C03	Base Section, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration
H2C04	Station Operation Tables, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration
H3C01	Plan View @ Grade, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
H3C02	Elevation Section, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
H3C03	Base Section, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
H3C04	Station Operation Tables, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
	Air Cell Assembly & Details
	Typical Details, Civil
Z0C03	Typical Details, Civil
	Discharge Piping Support Details
	Catwalk Details
	Surge Relief Valve Details
	Typical Details, Civil
	Typical Site Details
Z0C09	Example - Site Plan
A1S01	Structural, 2-Pumps @ 100 gpm per Pump, Atternate High Profile Configuration

COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS Drawing Title New Sht No. A2S01 Structural, 2-Pumps @ 100 gpm per Pump, Preferred Configuration A3S01 Structural, 2-Pumps @ 100 gpm per Pump, Alternate Low Profile Configuration B1S01 Structural, 2-Pumps @ 100 -300 gpm per Pump, Alternate High Profile Configuration B2S01 | Structural, 2-Pumps @ 100 - 300 gpm per Pump, Preferred Configuration B3S01 Structural, 2-Pumps @ 100 - 300 gpm per Pump, Alternate Low Profile Configuration C1S01 Structural, 2-Pumps @ 250 - 500 gpm per Pump, Alternate High Profile Configuration C1S02 Structural, 2-Pumps @ 250 - 500 gpm per Pump, Alternate High Profile Configuration C2S01 | Structural, 2-Pumps @ 250 - 500 gpm per Pump, Preferred Configuration C2S02 Structural, 2-Pumps @ 250 - 500 gpm per Pump, Preferred Configuration C2S03 | Structural, 2-Pumps @ 250 - 500 gpm per Pump, Preferred Configuration C3S01 Structural, 2-Pumps @ 250 - 500 gpm per Pump, Alternate Low Profile Configuration C3S02 Structural, 2-Pumps @ 250 - 500 gpm per Pump, Alternate Low Profile Configuration C3S03 Structural, 2-Pumps @ 250 - 500 gpm per Pump, Alternate Low Profile Configuration D1S01 Structural, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate High Profile Configuration D1S02 | Structural, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate High Profile Configuration D2S01 | Structural, 3-Pumps @ 250 - 2000 gpm per Pump, Preferred Configuration D2S02 Structural, 3-Pumps @ 250 - 2000 gpm per Pump, Preferred Configuration D2S03 | Structural, 3-Pumps @ 250 - 2000 gpm per Pump, Preferred Configuration D2S04 Structural, 3-Pumps @ 250 - 2000 gpm per Pump, Preferred Configuration D3S01 Structural, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate Low Profile Configuration D3S02 Structural, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate Low Profile Configuration D3S03 Structural, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate Low Profile Configuration D3S04 Structural, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate Low Profile Configuration E1S01 | Structural, 3—Pumps @ 2000 — 5300 gpm per Pump, Alternate High Profile Configuration E1S02 | Structural, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate High Profile Configuration E1S03 Structural, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate High Profile Configuration

0011 5501011	OURSEL MISO SO	S ALIDERCON E	OTATIONO
COH DESIGN	GUIDELINES FU	DR SUBMERSIBLE	SIAHUNS

New	COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS Drawing Title
Sht No.	Diaming line
	Structural, 3-Pumps @ 2000 - 5300 gpm per Pump, Preferred Configuration
E2001	Structural, 3—Pumps @ 2000 — 5300 gpm per Pump, Preferred Configuration
E2002	Structural, 3—Pumps @ 2000 — 5300 gpm per Pump, Preferred Configuration
E2303	Structural, 3—Pumps @ 2000 — 5300 gpm per Pump, Preferred Configuration
E2304	Structurar, 3—Fumps @ 2000 = 5500 gpm per Fump, Freienes Consiguration
ERENT	Structural, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate Low Profile Configuration
E3901	Structural, 3—Pumps @ 2000 — 5300 gpm per Pump, Alternate Low Profile Configuration
E3002	Structural, 3—Pumps @ 2000 — 5300 gpm per Pump, Alternate Low Profile Configuration
E0000	Structural, 3—Pumps @ 2000 — 5300 gpm per Pump, Alternate Low Profile Configuration
E3304	Structural, 3-rumps @ 2000 - 5000 gpm per rump, Alternate 2041 10/10 Comiguration
E1901	Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate High Profile Configuration
E1902	Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate High Profile Configuration
	Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate High Profile Configuration
1 1000	Ottactalat, 4-4 amps @ ood 2000 gpitt por t ampj that take this to might to me a simple take the
F2S01	Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Preferred Configuration
F2S02	Structural, 4—Pumps @ 500 — 2500 gpm per Pump, Preferred Configuration
F2S03	Structural, 4—Pumps @ 500 — 2500 gpm per Pump, Preferred Configuration
F2S04	Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Preferred Configuration
F3S01	Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate Low Profile Configuration
F3S02	Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate Low Profile Configuration
F3S03	Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate Low Profile Configuration
F3S04	Structural, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate Low Profile Configuration
, , , ,	
G1S01	Structural, 3 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration
	Structural, 3 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration
G1S03	Structural, 3 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration
G2S01	Structural, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration
	Structural, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration
	Structural, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration
G2S04	Structural, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration
G3S01	Structural, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
G3S02	Structural, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration

	COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS		
New	Drawing Title		
Sht No.			
G3S03	Structural, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration		
G3S04	Structural, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration		
H1S01	Structural, 4 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration		
H1S02	Structural, 4 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration		
H1S03	Structural, 4 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration		
H2S01	Structural, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration		
H2S02	Structural, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration		
H2S03	Structural, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration		
H2S04	Structural, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration		
H3S01	Structural, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration		
H3S02	Structural, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration		
H3S03	Structural, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration		
H3S04	Structural, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration		
Z0S01	Structural - Typical Details		
Z0S02	Structural – General Notes		
A1E01	Conduit Layout, 2-Pumps @ 100 gpm per Pump, Alternate High Profile Configuration		
	Conduit Layout, 2-Pumps @ 100 gpm per Pump, Preferred Configuration		
A3E01	Conduit Layout, 2-Pumps @ 100 gpm per Pump, Alternate Low Profile Configuration		
	Description Continued to the Continued Continu		
B1E01	Conduit Layout, 2-Pumps @ 100 - 300 gpm per Pump, Alternate High Profile Configuration		
B2E01	Conduit Layout, 2—Pumps @ 100 — 300 gpm per Pump, Preferred Configuration		
B3E01	Conduit Layout, 2-Pumps @ 100 - 300 gpm per Pump, Alternate Low Profile Configuration		
	A Living Company of the Company of t		
C1E01	Conduit Layout, 2-Pumps @ 250 - 500 gpm per Pump, Alternate High Profile Configuration		
Octor.	Occasion Continue Con		
C2E01	Conduit Layout, 2—Pumps @ 250 — 500 gpm per Pump, Preferred Configuration		
COECI	Conduit Layout w/JB Outside Valve Vault, 2-Pumps @ 250 - 500 gpm per Pump, Alternate Low Profile Configuration		
C3E01	Conduit Layout w/JB Inside Valve Vault, 2—Pumps @ 250 – 500 gpm per Pump, Alternate Low Profile Configuration		
UJEU2	Contouit Layout Wood inistre valve value, 2-runips @ 250 - 500 gpin per i bring, Alternate cow i folio delinigaration		

COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS		
New	Drawing Title	
Sht No.	<u>-</u>	
C3E03	Conduit Layout Sections, 2-Pumps @ 250 - 500 gpm per Pump, Alternate Low Profile Site Configuration	
00202		
D1E01	Conduit Layout, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate High Profile Configuration	
<u> </u>		
D2E01	Conduit Layout, 3-Pumps @ 250 - 2000 gpm per Pump, Preferred Configuration	
DILLO	Outlook adjourned to the second of the secon	
DSECT	Conduit Layout w/JB Outside Valve Vauit, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate Low Profile Configuration	
DaEus	Conduit Layout w/JB Inside Valve Vault, 3-Pumps @ 250 - 2000 gpm per Pump, Alternate Low Profile Configuration	
D3E03		
DOEUS	Conduit Layout decitoris, 6-F dirips @ 250 - 2000 gpin per f dirip, Atternate 250 f fonts domigaration	
E1E01	Conduit Layout, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate High Profile Configuration	
E 1E01	Collabit Layout, 6-Fairips @ 2000 - 3000 gp/ii per i omp, Alternate Fright Tome Collinguistics	
E2E01	Conduit Layout, 3-Pumps @ 2000 - 5300 gpm per Pump, Preferred Configuration	
LELUI	College Edyode, C. 7 dillips & 2000 Spin por Femp, Florence Collings College	
F3F01	Conduit Layout w/JB Outside Valve Vault, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate Low Profile Configuration	
E3E02	Conduit Layout w/JB Inside Valve Vault, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate Low Profile Configuration	
E3E03	Conduit Layout Sections, 3-Pumps @ 2000 - 5300 gpm per Pump, Alternate Low Profile Configuration	
	Contabilitation Contability of Composition Contability	
E1501	Conduit Layout, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate High Profile Configuration	
1,1201	College La Gar, 4 1 ampe & CCC 22000 gpm por amp 7 months 1 mg 1 months 2 mg 1 mg	
ESEU	Conduit Layout, 4-Pumps @ 500 - 2500 gpm per Pump, Preferred Configuration	
1201	Concert Edyoda, 4-1 dripo & cco - Esco gant por 1 dripa, 1 telestos contiguidad.	
E3E01	Conduit Layout w/JB Outside Valve Vault, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate Low Profile Configuration	
ESEUS	Conduit Layout w/JB Inside Valve Vault, 4-Pumps @ 500 - 2500 gpm per Pump, Alternate Low Profile Configuration	
F3E03		
1 0200	Antigent Pediant Anathental 1 1 ditiba & and Beat Anti attibal turattime man 1 tarita antigen-	
G1E01	Conduit Layout, 3 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration	
41701	Actions maland a size as mail stantias t anded treatment tides trains a similarization	
G2E01	Conduit Layout, 3 Wet & 2 Dry Weather Pumps, Preferred Configuration	
	Anthony soland a time as a self and sel	
G3F01	Conduit Layout w/JB Outside Valve Vault, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration	
G3F02	Conduit Layout w/JB Inside Valve Vault, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration	
G3F03	Conduit Layout Elevations, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration	
G3F04	Conduit Layout Sections, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration	
COLOR	Conduit Layout Sections, 3 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration	
<u> </u>	Political Expert decirous o tret of Dil Medicial Latino Linear Latin Commence	

	COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS
New	Drawing Title
Sht No.	
H1E01	Conduit Layout, 4 Wet & 2 Dry Weather Pumps, Alternate High Profile Configuration
H2F01	Conduit Layout, 4 Wet & 2 Dry Weather Pumps, Preferred Configuration
1	
H3F01	Conduit Layout w/JB Outside Valve Vault, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
H3F02	Conduit Layout w/JB Inside Valve Vault, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
H3F03	Conduit Layout Elevations, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
H3F04	Conduit Layout Sections, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
H3F05	Conduit Layout Sections, 4 Wet & 2 Dry Weather Pumps, Alternate Low Profile Configuration
W0E01	Level I Instrumentation, Outdoor Control Cabinet Installation & Air Piping Schematic
W0F02	Level I Instrumentation, Outdoor Control Panel Equipment Layout & Schedule
W0E10	Level I Instrumentation, Single Phase, Control Cabinet Equipment Layout
W0E11	Level I Instrumentation, Single Phase, Control Cabinet Equipment Layout
W0E12	Level I Instrumentation, Single Phase, Single Line, & Power Wiring Diagrams
W0E13	Level I Instrumentation, Single Phase, Control Wiring Diagram
W0E14	Level I Instrumentation, Single Phase, Control Wiring Diagram
W0E15	Level I Instrumentation, Single Phase, Alternate Control Wiring Diagram
W0E20	Level I Instrumentation, Three Phase, Control Cabinet Equipment Layout
W0E21	Level I Instrumentation, Three Phase, Control Cabinet Equipment Layout
W0E22	Level I Instrumentation, Three Phase, Single Line, & Power Wiring Diagrams
W0E23	Level I Instrumentation, Three Phase, Control Wiring Diagram
W0E24	Level I Instrumentation, Three Phase, Control Wiring Diagram
W0E25	Level I Instrumentation, Three Phase, Alternate Control Wiring Diagram
W0E30	Level I Instrumentation, Control System Process & Instrumentation Diagram
X0E01	Level II Instrumentation, Outdoor Control Cabinet Installation & Air Piping Schematic
X0E02	Level II Instrumentation, Outdoor Control Cabinet Equipment Layout & Schedule
X0E03	Level II Instrumentation, Outdoor Control Cabinet Equipment Layout
X0E04	Level II Instrumentation, Outdoor Control Cabinet Equipment Layout
X0E05	Level II Instrumentation, Outdoor Control Cabinet Equipment Layout

COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS		
New	Drawing Title	
Sht No.		
X0E06	Level II Instrumentation, Outdoor Panel, Power Wiring Diagram	
X0E10	Level II Instrumentation, Outdoor Power Panel, Single Line Diagram	
X0E21	Level II Instrumentation, Indoor Control Cabinet Layout & Air Piping Schematic	
X0E22	Level II Instrumentation, Indoor Control Cabinet Equipment Layout	
	Level II Instrumentation, Indoor Control Cabinet Equipment Layout	
X0E24	Not Used	
X0E25	Level II Instrumentation, Indoor Panel, MCC Power Schematic & Wiring Diagram	
X0E28	Level II Instrumentation, Indoor Panel, Single Line Diagram	

X0E40	Level II Instrumentation, Outdoor Panel, Control System Process & Instrumentation Diagram	
X0E41	Level II Instrumentation, Outdoor Panel, Control System Process & Instrumentation Diagram	
	The state of the s	
X0E50	Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram	
X0E51	Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram	
X0E52	Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram	
X0E53	Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram	
X0E54	Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram	
X0E55	Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram	
X0E56	Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram	
X0E57	Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram	
X0E58	Level II Instrumentation, Outdoor Control Panel, Control Wiring Diagram	
	Discourse Control of the Control of	
X0E60	Level II Instrumentation, Indoor Panel, Control System Process & Instrumentation Diagram	
X0E61	Level II Instrumentation, Indoor Panel, Control System Process & Instrumentation Diagram	
	La Lill Communication Indian Control Depart Control Witting Disputer	
X0E70	Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram	
X0E71	Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram	
X0E72	Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram	
X0E73	Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram	
X0E74	Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram	
X0E75	Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram	
X0E76	Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram	

	COH DESIGN GUIDELINES FOR SUBMERSIBLE STATIONS
New	Drawing Title
Sht No.	
X0E77	Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram
X0E78	Level II Instrumentation, Indoor Control Panel, Control Wiring Diagram
Y0E20	Level III Instrumentation, Air Piping Schematic
Y0E21	Level III Instrumentation, Control Cabinet Layout & Equipment Schedule
Y0E22	Level III Instrumentation, Control Cabinet Equipment Layout
Y0E23	Level III Instrumentation, Control Cabinet Equipment Layout
Y0E24	Not Used
Y0E25	Not Used
Y0E26	Level III Instrumentation, MCC Power Schematic, Control Power & Communications Wiring Diagram
Y0E30	Level III Instrumentation, Single Line Diagram
Y0E40	Level III Instrumentation, Control System Process & Instrumentation Diagram
Y0E41	Level III Instrumentation, Control System Process & Instrumentation Diagram
-	
Y0E50	Level III Instrumentation, Control Wiring Diagram
Y0E51	Level III Instrumentation, Control Wiring Diagram
	Level III Instrumentation, Control Wiring Diagram
Y0E53	Level III instrumentation, Control Wiring Diagram
Y0E54	Level III Instrumentation, Control Wiring Diagram
Y0E55	Level III Instrumentation, Control Wiring Diagram
Y0E56	Level III Instrumentation, Control Wiring Diagram
Y0E57	Level III Instrumentation, Control Wiring Diagram
Y0E58	Level III Instrumentation, Control Wiring Diagram
	Level III Instrumentation, Control Wiring Diagram
	Level III Instrumentation, Control Wiring Diagram
Z0E01	Electrical Symbols, Legend, Lighting Fixture Symbols & Abbreviations
Z0E02	Typical Junction Box Details
	Typical Details, Instrumentation/Electrical
	Typical Details, Instrumentation/Electrical
	Control Building, Instrumentation/Electrical
Z0E06	

COH DESIGN GUIDELINI	S FOR SUBMERSIBLE STATIONS		

	Drawing Title
New	Diaming ride
Sht No.	
Z0E 10	
Z0E11	Level II or III Instrumentation, MCC Elevations
Z0E12	Level II or III Instrumentation, MCC Elevations
Z0E13	Level II or III Instrumentation, MCC Elevations
Z0E14	Level II or III Instrumentation, MCC Elevations
Z0E15	Level II or III Instrumentation, MCC Elevations
Z0E20	Level II or III Instrumentation, Conduit Schedules for 240V System
Z0E21	Level II or III Instrumentation, Conduit Schedules for 480V System
Z0E40	Level II or III Instrumentation, Device Ratings Schedules for 240V System
Z0E41	Level II or III Instrumentation, Device Ratings Schedules for 480V System
Z0E42	Level II or III Instrumentation, Device Ratings Schedules for 480V System
Z0E43	Level II or III Instrumentation, Device Ratings Schedules for 480V System
Z0E44	

City of Houston Standard Drawings - CADD File Layering (Level) Breakdown

All Text and Text related line entitles (i.e. Dimension & Leader Lines, Cross Section Lines, etc.) are placed on the layers beginning with 'T'; and each entity is placed on the layer corresponding to its color.

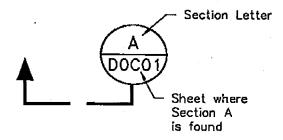
Example:			
<u>Layer Name</u>	<u>Color</u>	<u>Linetype</u>	<u>Description</u>
TXT-1	1 (red)	Continuous	Text, Dim & Ldr lines which are red
TXT-2	2 (yellow)	Continuous	Text, Dim & Ldr lines which are yellow
TXT-3	3 (green)	Continuous	Text, Dim & Ldr lines which are green
TXT-4	4 (cyan)	Continuous	Text, Dim & Ldr lines which are cvan

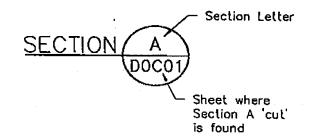
All Other entities are placed on layers beginning with 'L'; and each entity is placed on the layer corresponding to its color and linetype.

Example:			
Layer Name	<u>Color</u>	Linetype	Description
LCON-1	1 (red)	Continuous	Other entities which are Red & Continuous Lines
LCON-2	2 (yellow)	Continuous	Other entities which are Yellow & Continuous Lines
LCON-3	3 (green)	Continuous	Other entities which are Green & Continuous Lines
LCON-4	4 (cyan)	Continuous	Other entities which are Cyan & Continuous Lines
LCTR-1	1 (red)	Center	Other entitles which are Red & Center Lines
LCTR-2	2 (yellow)	Center	Other entitles which are Yellow & Center Lines
LCTR-3	3 (green)	Center	Other entities which are Green & Center Lines
LCTR-4	4 (cyan)	Center	Other entitles which are Cyan & Center Lines
LDAS-1	1 (red)	Dashed	Other entitles which are Red & Dashed Lines
LDAS-2	2 (yellow)	Dashed	Other entities which are Yellow & Dashed Lines
LDAS-3	3 (green)	Dashed	Other entities which are Green & Dashed Lines
LDAS-4	4 (cyan)	Dashed	Other entitles which are Cyan & Dashed Lines
LHID-1	1 (red)	Hidden	Other entitles which are Red & Hidden Lines
LHID-2	2 (yellow)	Hidden	Other entities which are Yellow & Hidden Lines
LHID-3	3 (green)	Hidden	Other entities which are Green & Hidden Lines
LHID-4	4 (суап)	Hidden	Other entities which are Cyan & Hidden Lines

Other layers or levels may exist; i.e. LMHID-4, LSDAS-1, etc. The last digit represents the color no. & the digits between L and the last digit represent the entity linetype. Unused layers have been purged from the drawing file.

Suggested Color to Line Weights

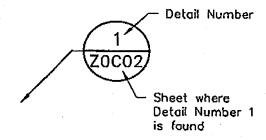

Color	Line Weight
1 (red)	0.35 mm
2 (yellow)	0.50 mm
3 (green)	0.70 mm
4 (cyan)	0.25 mm
5 (blue)	0.25 mm
6 (magenta)	0.35 mm
7 (white)	0.50 mm
8 (grey)	0.35 mm
9 (rust)	0.35 mm
10 (gold)	0.25 mm
11 (avocado)	0.25 mm

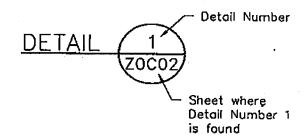

EXPLANATION OF SECTION & DETAIL INDICATORS FOR COH LIFT STATION DESIGN GUIDELINE DRAWINGS

Section Indicators

Indicator on Field of Dwg ('Cut'):

Indicator at Section:





<u>Detail Indicators</u>

Indicator on Field of Dwg (Callout):

Indicator at Detail:

Note:

Details are not referenced back to the sheet(s) where they are called out on the Field of Dwg. These references would be numerous, and locations redundant in relation to each separate lift station configuration.

Notes:

The sheet number is located in the lower right corner of the drawing Title Block in the space labeled "DWG NO."

The sheet numbers called out on the Design Guideline Drawings are for the purposes of referencing information in the Design Guideline Drawing package. The Design Engineer shall revise all sheet number references to reflect the appropriate sheet number in his project drawing package.

